Supporting information for: Dynamical Insights into the Mechanism of a Droplet Detachment from a Fiber

Neda Ojaghlou^a, Hooman V. Tafreshi^b, D. Bratko^{a,*}, and Alenka Luzar^{a,*}

^a Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States

^b Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States

Figure S1. Snapshots from a MD trajectory during the droplet detachment from a fiber for the atomistic model with $V_r = 750$ and fiber radius $r_f = 6.4$ Å. (1-a): snapshots at different times *t* and corresponding external forces $F_0=0$, $F_1=0.0041$, $F_2=0.0046$, and $F_3=0.005$ kJ mol⁻¹Å⁻¹. The force is increased gradually until the drop is about to detach from the fiber. (1-b): snapshots showing the evolution of droplet shape at constant force, F=0.0058 kJ mol⁻¹Å⁻¹, exerted on the droplet during the simulation.

Figure S2. Snapshots from MD trajectories of the droplet detachment from a fiber for the atomistic model. Figures a-b show that the breakup takes place at different distances from the fiber and different times during two different atomistic simulation run s with $V_r = 500$. The droplet consists of 4000 SPC/E water molecules and the fiber radius is 6.4 Å. The force is $F=0.0125 \ kJ \ mol^{-1} \text{Å}^{-1}$. Figures c-e show the formation of a satellite droplet following the detachment of the drop from the fiber under the force $F=0.0292 \ kJ \ mol^{-1} \text{Å}^{-1}$ for the atomistic water model and $V_r = 2000$. The droplet contains 17000 SPC/E water molecules and the fiber radius $r_f = 6.4 \ \text{Å}$.