Supporting Information

Liquid Crystalline Moiety-Assisted Perpendicular Orientation of Cylindrical Domains within P4VP-*b*-PMA(Az) Films with High Aspect Ratio

Ting Qu,^a Song Guan,^a Chen Zhang,^a Xiaoxiong Zheng,^a Yongbin Zhao,^b Aihua Chen*^{ac}

^{a.} School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China.

^{b.} Shandong Oubo New Material Co. Ltd, Shandong, 257088, P. R. China.

^{c.} Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China

Figure S1. ¹H NMR spectrum of MA(Az).

Figure S2. ¹H NMR spectra of different P4VP macroinitiator and P4VP_m-*b*-PMA(Az)_n BCPs.

Figure S3. GPC curves of the P4VP macroinitiators with DMF as eluent, and $P4VP_m$ -*b*- $PMA(Az)_n$ BCPs with THF as eluent.

Table S1. Properties of the P4VP macroinitiators and P4VP-*b*-PMA(Az) BCPs synthesized
by the ATRP method.

Sample	^{<i>a</i>} M _n (NMR)	^b M _n (GPC)	$^{c}M_{ m w}/M_{ m n}$	^d DP _{P4VP}	eDP _{PMA(Az)}	ff _{P4VP}	^g Morphology
P4VP ₅₀	5,500	7,500	1.05	50		1	_

P4VP ₁₀₀	10,500	12,500	1.12	100	—	1	
P4VP ₁₀₀ - <i>b</i> -MA(Az) ₁₅	17,880	20,660	1.28	100	15	0.58	sphere
$P4VP_{50}-b-MA(Az)_{10}$	10,180	13,800	1.28	50	10	0.50	lamellae
P4VP ₁₀₀ - <i>b</i> -MA(Az) ₆₀	40,020	53,400	1.30	100	60	0.25	cylinder
P4VP ₁₀₀ - <i>b</i> -MA(Az) ₇₅	47,400	60,300	1.33	100	75	0.21	sphere

^aNumber-average molecular weight determined by NMR.

^bNumber-average molecular weight determined by GPC.

^cPolydispersity determined by GPC calibrated with polystyrene standards.

^dPolymerization degree of P4VP.

^ePolymerization degree of PMA(Az).

^fThe volume fraction of P4VP calculated by using molecular weight and density (P4VP: 1.15 g/cm³ and PMA(Az): 1.10 g/cm³) of each block.

^gThe morphology of block copolymer film is determined by SEM observations.

Figure S4. DSC curves of BCPs on first cooling (a) and second heating processes (b) with heating/cooling rate of ± 10 °C min⁻¹.

Figure S5. SEM images of P4VP₁₀₀-b-PMA(Az)₆₀ self-assembled films with 2 μm by thermal annealing (160 °C/1 h and 105 °C/24 h) (a), solvent-annealed in THF vapor (b), IPA vapor (c) and chloroform vapor (d, e) at room temperature for 24 h. d with (10) planes of hexagonal alignment, e with (11) planes of hexagonal alignment, respectively.

Figure S6. SEM (a, b, d-h) and AFM (c) images of P4VP_m-*b*-PMA(Az)_n self-assembled films with different f_{P4VP} , respectively. (a, b) P4VP₁₀₀-*b*-PMA(Az)₇₅ ($f_{P4VP} = 0.21$), (c, d) P4VP₁₀₀-*b*-PMA(Az)₆₀ ($f_{P4VP} = 0.25$), (e, f) P4VP₅₀-*b*-PMA(Az)₁₀ ($f_{P4VP} = 0.50$), (g, h) P4VP₁₀₀-*b*-PMA(Az)₁₅ ($f_{P4VP} = 0.58$). Right images are the schemes of these morphologies, respectively. Blue part and green part represent P4VP and PMA(Az) blocks, respectively.

Figure S7. SEM images of the TiO₂ nanomaterials from corresponding templates: (a) topview of TiO₂ nanosphericals from the annealed P4VP₁₀₀-*b*-PMA(Az)₇₅ film with 50 nm thickness; (b) top-view of TiO₂ porous films from the annealed P4VP₁₀₀-*b*-PMA(Az)₁₅ film with 50 nm thickness.

Figure S8. (a) Geometrical relationship and center-to-center distances of perpendicular cylinders, wide stripes P and narrow stripes P1. (b) SEM image of (11) planes of hexagonal alignment.

Figure S9. Cross-section SEM images of the solvent-annealed $P4VP_{100}$ -*b*-PMA(Az)₆₀ films with different thicknesses: 3 µm (a, b); 4 µm (c, d); 6 µm (e, f); a, c, e with (11) planes of hexagonal alignment; b, d, f with (10) planes of hexagonal alignment, respectively.