Supplementary Information

Effects of additives on the viscoelastic responses of cationic gemini surfactant solution

Xiaoxiao Chen, Qi Liu, Yan Guo, Hui Yan, Jing Li*, Dongmei Lv, Junhong Zhang, Chunhong Yao Min Liu, Xilian Wei*

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China

	¹ HNMR (δ ,CDCl ₃)	Anal.found %(Calculated values %)
G ₁₄ Cl	0.88 (t,6, 2 <u>CH</u> ₃ CH ₂)	H,12.48 (12.44)
	1.24~1.47 (m,44H, 2CH ₃ (<u>CH₂</u>) ₁₁),	C,68.88 (68.74)
	1.672~1.83 (t,4H, 2CH ₃ (CH ₂)9 <u>CH₂</u>)	N,4.63 (4.58)
	2.16 (m,1H,O <u>H</u>)	
	3.39~3.42 (s,12H,N(<u>CH₃</u>) ₂)	
	3.457~3.578(t,8H,2CH ₃ (CH ₂) ₁₀ CH ₂ NCH ₂)	
	5.19(m,1H)	

1. ¹H NMR and elemental analysis data of the 14-3(OH)-14(2Cl)

Curves of apparent viscosity (η) versus shear rate (ý) for aqueous solutions of 80 mmol·kg⁻¹ 14-3(OH)-14(2Cl) at different salt concentrations: (A) *m*-SHB; (B) *p*-SHB.

Storage modulus (closed symbols) and loss modulus (open symbols) as a function of the angular frequency for the 80 mmol·kg⁻¹ 14-3(OH)-14(2Cl) solution at different salt concentrations: (A) and (B) *o*-SHB; (C) and (D) NaCl; (E) and (F) *p*-SHB; (G) and (H) *m*-SHB at 298.15 K.

Compound	14-3(OH)-14(2Cl)+o-SHB
Formula	C ₄₂ H ₇₉ Cl N ₂ O ₈
Formula wt	775.55
Cryst syst	Triclinic
Space group	P-1
<i>a</i> . Å	9.2108(8)
<i>b</i> . Å	9.4525(8)
<i>c</i> . Å	29.308(3)
α . °	87.928(2)
β. °	83.1320(1)
γ. °	71.2010(1)
<i>V</i> . Å ³	2398.3(4)
Ζ	2
$D_{\text{calc.}}$ (g cm ⁻³)	1.074
<i>F</i> (000)	870
M(Mo <i>K</i> α) (mm ⁻¹)	0.133
Theta range	2.38 -25.02
Reflections measured	12289
Unique reflections	8344
<i>R</i> (int)	0.11
Final R_1 [$I > 2\sigma(I)$]	0.11
Final $wR_2 [I > 2\sigma(I)]$	0.34

4. The structural pa	arameters of 14-3	3(OH)-14(2Cl)/o-SHB crystal	l

5. ¹H NMR spectra for 14-3(OH)-14(2Cl)/additives systems: (a) the bottom spectrum is 80 mmol·kg⁻¹ 14-3(OH)-14(2Cl) in D₂O. Then, from bottom to top, 15 mmol·kg⁻¹ salts (*p*-SHM, *o*-SHM and *m*-SHM) were added into 80 mmol·kg⁻¹ 14-3(OH)-14(2Cl) solutions; (b) the bottom spectrum is 14-3(OH)-14(2Cl) in D₂O. Then, from bottom to top, 20 mmol·kg⁻¹ salts (*p*-SHM, *o*-SHM and *m*-SHM) were added into 20 mmol·kg⁻¹ 14-3(OH)-14(2Cl) solutions.

