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Bending modulus of clay layers

Consider a periodic plate, with period L, subjected to punctual forces in a direction x

and constanty distributed in a direction y perpendicular to x. The opposed forces are

Fz (x) =


F if x mod L = −L

4

−F if x mod L = L
4

, where F is given in force par length unit (in y direction).

The normal efforts are zero (no in-plane loadings). Due to the symmetry of the problem,

the momentum are periodic and odd in x direction and constant in y direction:

Mab (x, y) =Mab (x) = −Mab (−x) =Mab (x+ L) (1)

The equilibrium of moments yields:
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The moments Myy and Mxy vanish and only Mxx is non-zero. The expression of Mxx

is obtained by integration of the last equation accounting for the symmetry conditions
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Since the displacement respects the same symmetries, we have ux = 0, uy = 0 and

uz (x, y) = uz (x) = −uz (−x) = uz (x+ L) with uz
(
x = −L

2

)
= uz

(
x = L

2

)
= 0. The

expression of uz is obtained from integration of the momentMxx. The constants of integration

can be obtained from the conditions imposed on the boundary and from the continuity of

the derivatives of displacement uz. We have:

uz (x) =
1
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For a system controlled by a displacement δ, instead of the force F , we have:
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)3

Dxδ (5)

Finally, the free elastic energyW per units of length (with respect to y direction) is equal

to the work of external applied forces: :
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This result can also be found by integration of the local elastic energy over the whole

plate:
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The dimensionless formulation is retrieved by the definiton of the dimensionless variables

x∗ = 4
L
x, u∗z =

4
L
uz, F ∗ = F

Dxxxx

(
L
4

)2,M∗
xx =

Mxx

Dxxxx

L
4
, δ∗ = 4

L
δ = F ∗

6
andW ∗ = W

Dxxxx

L
4
. Thus,

the dimensionless forms of moment, displacement and free elastic energy read, respectively:

M∗
xx (x)

F ∗ = 6
M∗

xx (x)

δ∗
=


−1

2
(2 + x∗) if − 2 < x∗ < −1

1
2
x∗ if − 1 < x∗ < 1

1
2
(2− x∗) if 1 < x∗ < 2

(8)

u∗z (x)

F ∗ = 6
u∗z (x)

δ∗
=


− 1

12
(2 + x∗)3 + 1

4
(2 + x∗) if − 2 < x∗ < −1

1
12
(x∗)3 − 1

4
x∗ if − 1 < x∗ < 1

1
12
(2− x∗)3 − 1

4
(2− x∗) if 1 < x∗ < 2

(9)

W ∗ = 6 (δ∗)2 =
1

6
(F ∗)2 (10)

For the sake of concision Dxxxx is called Dx in the paper, with x being the direction in

which the problem is treated; y, the corresponding in-plane perpendicular direction and z,

the direction perpendicular to the plate.
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