Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2018

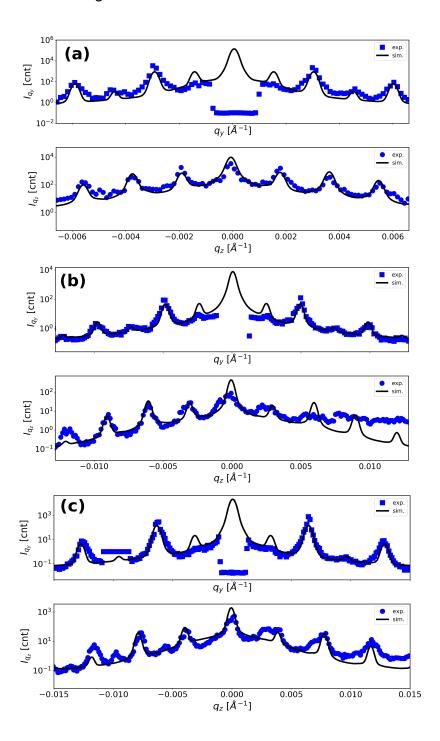
ELECTRONIC SUPPLEMENTARY INFORMATION

Unravelling structural rearrangement of polymer colloidal crystals under dry sintering conditions

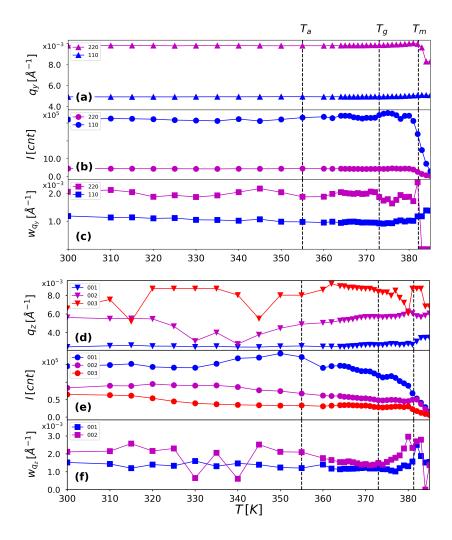
Alexey V. Zozulya,**a Ivan A. Zaluzhnyy,*b,c Nastasia Mukharamova,*b Sergey Lazarev,*b,d Janne-Mieke Meijer,*e\pm\$ Ruslan P. Kurta,*a Anatoly Shabalin,*b\strum Michael Sprung,*b Andrei V. Petukhov,*e,f and Ivan A. Vartanyants*b,c

^a European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany; E-mail: alexey.zozulya@xfel.eu

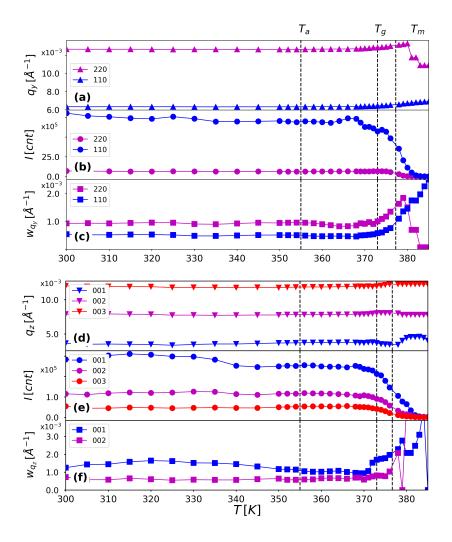
^b Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany

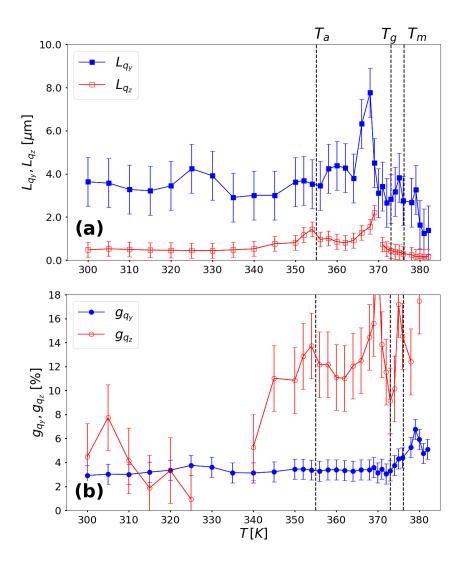

^c National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye ch. 31, 115409 Moscow, Russia

^d National Research Tomsk Polytechnic University (TPU), Lenin Avenue 30, 634050 Tomsk, Russia


^e Van 't Hoff Laboratory for Physical and Colloid Chemistry, Department of Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH, The Natherlands

f Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands


Figure S1 GTSAXS intensity profiles (dots) and fitting curves (lines) for the PS colloidal crystal samples (a) A, (b) B and (c) C at RT. For each sample the top and the bottom profiles refer to q_y -and q_z -directions (depicted as dashed lines in Figure 3 of the main text), respectively. q_y -profiles include diffraction peaks up to (220) order and q_z -profiles include peaks up to (003) order. Structural parameters deduced from fitting curves are summarized in Table 1 of the main text.


Figure S2 Temperature dependences of GTSAXS peak positions, integrated intensities and widths of the PS colloidal crystal sample B for (a-c) in-plane and (d-f) out-of-plane directions.

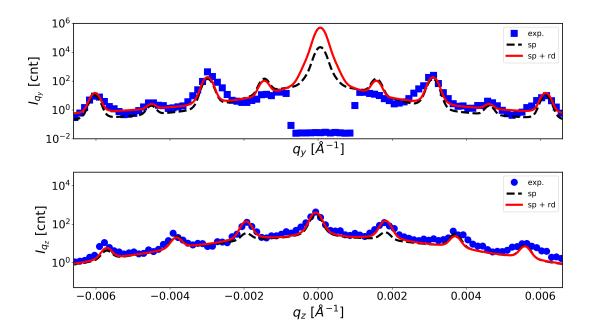

Figure S3 Temperature dependences of GTSAXS peak positions, integrated intensities and widths of the PS colloidal crystal sample C for (a-c) in-plane and (d-f) out-of-plane directions.

Figure S4 Temperature dependences of (a) CSD sizes and (b) lattice deformation parameters for in-plane (blue filled dots) and out-of-plane (red open dots) directions of the sample C.

Figure S5 Experimental (dots) and simulated (lines) GTSAXS intensity profiles for the PS colloidal crystal sample A at T=376 K. Calculated curves were obtained using the scattering functions of a single shape (dashed line) and 1:1 mixture of spheres and rhombic dodecahedrons (solid line).

