
Supplementary Information for “Modeling the relative dynamics of DNA-coated
colloids”

James P. Lee-Thorp and Miranda Holmes-Cerfon∗

Courant Institute of Mathematical Sciences, New York University, NY, USA

S1. DETAILS OF DISC CALCULATIONS

This section contains auxiliary details of the calculations from Section 5.
The first derivatives ∂(l, θ)/∂(x, ξ) are calculated by implicit differentiation from the relations (20) to be

∂l

∂x
= sin θ,

∂l

∂ξ
= R sin(ξ + θ),

∂θ

∂x
=

cos θ

l
,

∂θ

∂ξ
=
R

l
cos(ξ + θ) . (S1)

The second derivatives ∂2(l, θ)/∂(x, ξ)2 are

∂2l

∂x2
=

cos2 θ

l
,

∂2l

∂ξ2
=
R2

l
cos(ξ + θ)

(
l

R
+ cos(ξ + θ)

)
,

∂2l

∂x∂ξ
=
R

l
cos θ cos(ξ + θ),

∂2θ

∂x2
=

sin 2θ

l2
,

∂2θ

∂ξ2
=
R2

l2
sin(ξ + θ)

(
l

R
+ 2 cos(ξ + θ)

)
,

∂2θ

∂x∂ξ
=
−R
l2

sin(ξ + 2θ) . (S2)

The second derivatives of energy, calculated by applying the chain rule to expression (19), are

∂xxEtether = kl

( ∂l
∂x

)2
+ kθ

(∂θ
∂x

)2
+ kl(l − l̄)

∂2l

∂x2
+ kθθ

∂2θ

∂x2

= kl +
kθ
l2

(cos2 θ + θ sin 2θ)

∂ξξEtether = kl

( ∂l
∂ξ

)2
+ kθ

(∂θ
∂ξ

)2
+ kl(l − l̄)

∂2l

∂ξ2
+ kθθ

∂2θ

∂ξ2

= klR
2

(
1 +

l

R
cos(ξ + θ)

)
+
kθR

2

l2

(
cos2(ξ + θ) + θ sin(2(ξ + θ)) +

l

R
θ sin(ξ + θ)

)
∂xξEtether = kl

( ∂l
∂x

)( ∂l
∂ξ

)
+ kθ

(∂θ
∂x

)(∂θ
∂ξ

)
+ kl(l − l̄)

∂2l

∂x∂ξ
+ kθθ

∂2θ

∂x∂ξ

= klR cos ξ +
kθR

l2
(cos θ cos(ξ + θ)− θ sin(ξ + 2θ))

S2. DERIVATION OF THE COARSE-GRAINED DYNAMICS: N TETHERS

In this section we derive the coarse-grained dynamics of the full system of N tethers. We use the same asymptotic
procedure as in Section 6 for the case of one tether, only now the generator is more complicated. We start by
explicitly showing the generator for N = 3 in order to better illustrate its structure, and then outline the generator
and derivation of the coarse-grained dynamics for N tethers.

For N = 3 tethers, the set of possible states for the collection of tethers is {u, b}3 so we need a vector of size 23 = 8
to represent the collection of states:

f = (fuuu, fuub, fubu, fbuu, fubb, fbub, fbbu, fbbb)
T . (S3)

For example, the state where all tethers are unbound is identified with the component fuuu and the state where only
the second tether is bound to the interval is identified with the component fubu.
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The full generator will still have the abstract decomposition L = Q+U +B + V as in (24), but now the generator
for each sub-process will be an 8× 8 matrix of operators. We now write down each generator in turn.

The generator associated with the binding/unbinding dynamics is

QT =



−3λ ν ν ν 0 0 0 0
λ −2λ− ν 0 0 ν 0 0 0
λ 0 −2λ− ν 0 ν 0 ν 0
λ 0 0 −2λ− ν 0 ν ν 0
0 λ λ 0 −λ− 2ν 0 0 ν
0 λ 0 λ 0 −λ− 2ν 0 ν
0 0 λ λ 0 0 −λ− 2ν ν
0 0 0 0 λ λ λ −3ν


, (S4)

where, for display purposes, we have defined λ ≡ qon, and ν ≡ qoff .
The generator for the evolution of the unbound tether lengths, following the ordering of the states given in (S3), is

the diagonal matrix

U = diag

 ∑
j=1,2,3

LOUj ,
∑
j=1,2

LOUj ,
∑
j=1,3

LOUj ,
∑
j=2,3

LOUj ,LOU1 ,LOU2 ,LOU3 , 0

 .

where

LOUj = −kγ−1lj∂lj + γ−1β−1∂2lj . (S5)

For example, the element U33 =
∑
j=1,3 LOUj acts on fubu, corresponding to the state for which only tethers j = 1

and 3 are unbound.
The generator for the evolution of bound tethers is the diagonal matrix

B = diag

0,Lbd3 ,Lbd2 ,Lbd1 ,
∑
j=2,3

Lbdj ,
∑
j=1,3

Lbdj ,
∑
j=1,2

Lbdj ,
∑

j=1,2,3

Lbdj


where

Lbdj = v∂lj . (S6)

For example, the element B33 = Lbd2 acts on fubu, corresponding to the state for which only the j = 2 tether is bound.
The generator for the interval velocity dynamics for the 3 tether system is the diagonal matrix

V = diag

0,Lint3 ,Lint2 ,Lint1 ,
∑
j=2,3

Lintj ,
∑
j=1,3

Lintj ,
∑
j=1,2

Lintj ,
∑

j=1,2,3

Lintj


where

Lintj = − k
m
lj∂v . (S7)

Now consider the generator for the N tether system, which is a natural generalization of the generator for the 3
tether system. For general N ≥ 1, we need a vector of length 2N to represent the possible states of the system:

f = (fu...u, fu...ub, fu...ubu, fu...ubuu, . . . , fb...bub, fb...bu, fb...b)
T . (S8)

Suppose the states are labelled 1, 2, . . . , 2N . Let b(i), u(i) be the set of tethers which are bound/unbound in state
i respectively. For example, b(3) = {2N − 1} and u(3) = {1, 2, . . . , 2N − 2, 2N}. Let |b(i)|, |u(i)| be the number of
bound/unbound tethers. Clearly |b(i)|+ |u(i)| = N .

It will be convenient to define a matrix S ∈ {0, 1}2N×N to be the matrix whose rows (corresponding to different
states) are a set of flags indicating whether each tether (the columns) is bound (1) or unbound (0) in each state, i.e.
Sij = 1 if tether j ∈ b(i), Sij = 0 if tether j ∈ u(i). The matrix which flags unbound tethers is 1− S, where 1 is the
2N ×N -dimensional matrix whose entries are all 1.
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The generator Q for the binding and unbinding process has components

Qij =

 λ if |b(j)| = |b(i)|+ 1
ν if |u(j)| = |u(i)|+ 1

−λ|u(i)| − ν|b(i)| if i = j
(S9)

The N tether generalizations of the U , B, and V matrices are

U = diag

 ∑
j=1,...,N

LOUj ,
∑

j=1,...,N−1
LOUj , . . . ,

∑
j=N,N−1

LOUj ,LOU1 , . . . ,LOUN−1,LOUN , 0


= diag

(
(1− S)LOU

)
, (S10)

B = diag

0,LbdN , . . . ,Lbd1 ,
∑

j=N,N−1
Lbdj , . . . ,

∑
j=1,...,N−1

Lbdj ,
∑

j=1,...,N

Lbdj


= diag

(
SLbd

)
, (S11)

V = diag

0,LintN , . . . ,Lint1 ,
∑

j=N,N−1
Lintj , . . . ,

∑
j=1,...,N−1

Lintj ,
∑

j=1,...,N

Lintj

 ,

= diag
(
SLint

)
(S12)

The operators LOUj , Lbdj , and Lintj are defined in (S5), (S6) and (S7), respectively, and LOU = (LOU1 , . . . ,LOUN )T , and
similarly for the other operators.

With the generator in hand we may proceed with the asymptotic analysis. We substitute the ansatz (26) into the
backward equation (23) and equate equal powers of ε to obtain a hierarchy of equations governing f (i)(l, v, t). At
order O(ε−2), we have

(Q+ U)f (0) = 0. (S13)

Equation (S13) possesses only constant in l solutions of the form:

f (0) = (1, 1, . . . , 1)
T
a(v, t). (S14)

At order O(ε−1), we have

(Q+ U)f (1) = −(B + V )f (0) = −V f (0) =
k

m
∂va Sl . (S15)

We have used that Bf (0) = 0 because f (0) is independent of lj , for j = 1, . . . , N ; see (S11) and (S6).
We claim the solution is

f (1) = − k
m
∂va

(
λ

ν

γ

k
1 +

1

ν
S

)
l , (S16)

To show this, it is sufficient to show that

(Q+ U)

(
λ

ν

γ

k
1 +

1

ν
S

)
l = −Sl .

We calculate each of the four terms in the product on the left-hand side in turn.

1. We have Q1 = 0, the zero matrix, since the sum of each row of Q is 0.

2. We also have that USl = 0, since the ith entry is ((1−S)LOU )i ·(Sl)i, and ((1−S)LOU )i only contains operators
acting on tethers in set u(i), while (Sl)i only contains tether lengths from set b(i).

3. We have that U1l = − kγ (1 − S)l, since the vector 1l has components identically equal to l1 + · · · + lN , so all

operators in each diagonal element have an effect, and (U1l)i =
∑
j∈u(i) LOUj lj .
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4. The remaining term to evaluate is QS. Consider component (i, k):

(QS)ik =
∑
j

QijSjk .

Recall that Sjk = 1 if k ∈ b(j), Sjk = 0 if k ∈ u(j).

Suppose k ∈ b(i). Then term QijSjk = λ iff |b(j)| = |b(i)| + 1 and k ∈ b(j). The number of such states, is the
number of ways of adding a bound tether, since k ∈ b(i) so we automatically have k ∈ b(j). The contribution to
the sum is λ|u(i)|. Now consider the number of js such that QijSjk = ν. We must have |u(j)| = |u(i)|+ 1, and
k ∈ b(j). Without this last condition on k, we would have |b(i)| such terms, the number of tethers that can be
flipped from bound to unbound, however one of these flips is k itself, which would make Sjk = 0. Therefore the
contribution to the sum is ν(|b(i)|−1). There is also a contribution from the diagonal, QiiSik = −ν|b(i)|−λ|u(i)|.
Putting this all together shows that

k ∈ b(i) ⇒ (QS)ik = λ|u(i)|+ ν(|b(i)| − 1)− ν|b(i)| − λ|u(i)| = −ν .

Now suppose k ∈ u(i). The number of js that contribute a λ equals 1, since to contribute we must have k ∈ b(j),
and so only k can be flipped. The number of js that contribute ν is 0, since a tether unbinds to go from i→ j
so k ∈ u(j). Therefore

k ∈ u(i) ⇒ (QS)ik = λ .

Putting all ks together shows that

QS = −νS + λ(1− S) .

Now we put all the four terms together to find

(Q+ U)

(
λ

ν

γ

k
1 +

1

ν
S

)
l =

(
−S +

λ

ν
(1− S)

)
l− λ

ν
(1− S)l = −Sl ,

so (S16) holds, as claimed.

Now we consider the O(ε0) equation:

(Q+ U)f (2) = −(B + V )f (1) + ∂tf
(0). (S17)

Solvability of (S17) requires that for each π in the nullspace of (Q+ U)∗, we have〈
π,−(B + V )f (1) + ∂tf

(0)
〉

= 0. (S18)

One can verify (in a similar way to the calculations in section S3, see e.g. Eqs (S23), (S24)) that the nullspace of
(Q+ U)∗ is spanned by the vector

π =

(νλ)N ,(νλ)N−1 , . . . ,(νλ)N−1︸ ︷︷ ︸
N elements

,
(ν
λ

)N−2
, . . . ,

(ν
λ

)N−2
︸ ︷︷ ︸

(N2 ) elements

, . . . , 1


T

× e−βk
∑N
j=1 l

2
j/2 . (S19)

We now compute each of the terms in the inner product.
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Letting b = (|b(1)|, . . . , |b(2N )|)T , we have〈
π,−Bf (1)

〉
=

〈
π,− k

m
diag(SLbd)

[
∂va

(
λ

ν

γ

k
1 +

1

ν
S

)
l

]〉
=

(
γλ+ k

mν

)
v∂va 〈π,b〉

= Z

(
γλ+ k

mν

)
v∂va

N∑
k=0

k

(
N

k

)(ν
λ

)N−k
= Z

(
γλ+ k

mν

)
v∂va

N∑
k=1

N

(
N − 1

k − 1

)(ν
λ

)N−k
= Z

(
γλ+ k

mν

)
v∂va N

N−1∑
j=0

(
N − 1

j

)(ν
λ

)N−1−j
= Z

(
γλ+ k

mν

)
v∂va N

(
1 +

ν

λ

)N−1
where Z =

´
RN e

−βk
∑N
j=1 l

2
j/2dl.

For the second term, we use that ˆ
RN

Z−1lmlne
−βk

∑N
i=1 l

2
i /2dl =

1

kβ
δm,n,

and calculate the second inner product to be, substituting the calculation of 〈π,b〉 from above,〈
π,−V f (1)

〉
=

〈
π,

k

m
diag(SLint)

[
∂va

(
λ

ν

γ

k
1 +

1

ν
S

)
l

]〉
= −Z k

m

(
γλ+ k

mν

)
∂2va

1

βk
〈π,b〉

= −Z
(
γλ+ k

βm2ν

)
∂2va N

(
1 +

ν

λ

)N−1
The term involving f (0) in (S18) are straightforward to simplify. We have〈

π, ∂tf
(0)
〉

=
〈
π, (1, 1, . . . , 1)T

〉
∂ta

= Z

N∑
k=0

(
N

k

)(ν
λ

)N−k
= Z

(
1 +

ν

λ

)N
∂ta

Substituting the above relations into the solvability condition (S18) and grouping terms, (S18) reduces to:

∂ta =
N
(
γλ+k
mν

)
1 + ν

λ

v∂va+
1

βm

N
(
γλ+k
mν

)
1 + ν

λ

∂2va . (S20)

This is the backward equation for the process that solves (8), as claimed (recall λ = qon, ν = qoff , λ/ν = eβe0 .)

S3. STATIONARY DISTRIBUTION FOR THE N TETHER DYNAMICS

In this section we verify that the stationary distribution for the N tether dynamics is the Boltzmann distribution,
π ∝ e−βE , where Z is a normalizing constant and E is the energy, given in (1). Specifically,

π(l, s, v) = Z−1e−
βmv2

2

N∏
j=1

e−
βkl2j

2

(
eβe0δsj ,b + δsj ,u

)
. (S21)
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The normalization constant Z is chosen to ensure that π is a probability measure. From this formula, one can verify
by direct integration that the probabilities a tether is bound or unbound at any length in equilibrium are those given
in (3).

It will be convenient to write π in the following form:

π = Z−1πv,l πs (S22)

where

πv,l = e−
βmv2

2 e−
βk
2

∑N
j=1 l

2
j (S23)

and

πs =

(νλ)N ,(νλ)N−1 , . . . ,(νλ)N−1︸ ︷︷ ︸
N elements

,
(ν
λ

)N−2
, . . . ,

(ν
λ

)N−2
︸ ︷︷ ︸

(N2 ) elements

, . . . , 1


T

. (S24)

The ordering of states is the same as that in (S8).
The generator is L = Q + U + B + V with Q,U,B, V defined in (S9), (S10), (S11), (S12) respectively. We must

show that

L∗π = (Q+ U +B + V )∗π = 0 ,

where ∗ denotes the formal adjoint.
First we show that (B + V )∗πv,l c = 0, where c is any vector with the right dimensions which doesn’t depend on

v, l. We have that

(Lbdj )∗πv,l = −∂lj (v πv,l) =
βkvlj

2
πv,l

and

(Lintj )∗πv,l =
k

m
∂v(lj πv,l) = −βkvlj

2
πv,l .

Therefore (Lbdj )∗πv,l + (Lintj )∗πv,l = 0, so ((B + V )∗πv,lc)i = ci
∑
j∈b(i)

(
(Lbdj )∗πv,l + (Lintj )∗πv,l

)
= 0, so the result

follows.
Next we show that U∗πv,l = 0. We have that

(LOUj )∗πv,l =
k

γ
∂lj (ljπv,l) +

β−1

γ
∂2ljπv,l = 0 ,

and therefore any sum
∑
j∈u(i)(LOUj )∗πv,l = 0.

Finally we show that Q∗πs = 0. We have

(Q∗πs)i =
∑
j

Qij(πs)i

= |b(j)|λ
(
λ

ν

)|u(j)|−1
+ |u(j)|ν

(
λ

ν

)|u(j)|+1

− (λ|u(j)|+ ν|b(j)|)
(
λ

ν

)|u(j)|
= 0

Combining these calculations shows the desired result.


