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Results of Preliminary Simulation
Geometric Structure of Disk-shaped Particle
In order to investigate the geometric structure of the disk-shaped particle, we first calculate the
average plane of each disk-shaped particles by fitting the positions of the beads to an equation of
a plane ni(t) · [r− rcm,i(t)] = 0. Here, ni(t) is the unit normal vector of the average plane of the i-th
disk-shaped particle; r is the position vector of a point on the plane; and rcm,i(t) is the position
vector of the center of mass of the i-th disk-shaped particle. The root mean square deviation
σrmsd of the disk-shaped particle beads from the average plane is then calculated by the following
equation:

σrmsd =

√√√√⟨
1

ndNd

Nd

∑
i=1

nd

∑
j=1

{
ni(t) ·

[
r j(t)− rcm,i(t)

]}2

⟩
. (S1)

Here, r j(t) is the position vector of the j-th beads belonging to the i-th disk-shaped particle. The
average length ldiag of the diagonals of the disk-shaped particles is calculated as ldiag = ⟨rv⟩+σLJ.
Here, ⟨rv⟩ is the average distance between the beads at the vertices, e.g., A and B in the inset of
Fig. S1. Figure S1 shows the spring constant kθ dependences of the root mean deviation σrmsd
of the disk-shaped particle beads and the average length ldiag of the diagonal. At kθ = 1500εLJ,
the root mean deviation σrmsd is about 0.14σLJ and the average length ldiag of the diagonal is
about 4.84σLJ; therefore, we consider that the structures of the disk-shaped particles are well
maintained. Since the equilibrium length of each bond is about 0.961σLJ, the average length ldiag
of the diagonal becomes 4.84σLJ when the disk-shaped particle beads constitute an ideal plane with
the equilibrium bond length. With increasing the spring constant kθ , the root mean deviation σrmsd
slightly decreases, which is approximately proportional to k−0.2

θ . However, the average length ldiag
of the diagonal exceeds 4.84σLJ. Hence, we set the spring constant at kθ = 1500εLJ in this study.
We confirmed that the elongation stress σue at low strain and the tensile modulus E are almost
independent of the spring constant kθ at 1500εLJ ≤ kθ ≤ 5000εLJ (Fig. S2).

Time Development of Systems
Figure S3 shows the time developments of the average functionality ⟨g⟩ of the disk-shaped particles
and the pressure. The results in Fig. S3 are the averages of five independent runs with the systems
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Figure S1 The spring constant kθ dependences of the root mean deviation σrmsd of the disk-shaped particle
beads from the average plane and the average length ldiag of the diagonals of the disk-shaped particles.
The inset shows the schematic illustration of the distance rv between the beads at the vertices.
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Figure S2 (a) The spring constant kθ dependence of the elongation stress σue. The spring constant kθ

is varied from data to data: kθ = 1500εLJ (■), kθ = 2000εLJ (⃝), kθ = 3000εLJ (▲), kθ = 4000εLJ (▽), and
kθ = 5000εLJ (♦). The polymer model is HP38. (b) The tensile modulus E shown as a function of the spring
constant kθ . The composition ratio fd is varied from data to data: fd = 0.2 (■), fd = 0.3 (⃝), and fd = 0.4
(▲). The polymer model is HP38.
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of nt = 5.7× 103. From Fig. S3, we find that the systems reach each steady state by 1.5× 105τLJ
simulation. We then evaluate the steady state values from the average values at 1.5×105τLJ < t ≤
2.5× 105τLJ (the dashed lines in Fig. S3). The average functionality ⟨g⟩ and the pressure rapidly
approach each steady state value. After the calculation of 5× 104τLJ simulation, the deviation in
the average functionality ⟨g⟩ becomes within 3% of the steady state value and the difference in
the pressure from the steady state is less than 0.04. The pressure corresponds to −σdiag, where
σdiag is the average of the diagonal components of the stress tensor. As shown in Fig. S13, the
measurement range of the pressure is −0.2 ≲ −σdiag ≲ 1.5; hence, the pressure difference 0.04 is
less than 3% of the measurement range of the pressure. Therefore, we consider that the systems
almost reach the equilibrium by 5× 104τLJ simulation. In order to reduce the calculation cost,
we set the simulation times for the equilibration to 5× 104τLJ. We confirmed that our simulation
results, which correspond to the average values at 5×104τLJ < t ≤ 1×105τLJ, well agree with the
steady state values (Fig. S4).
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Figure S3 Time developments of (a) the average functionality ⟨g⟩ of the disk-shaped particles and (b) the
pressure. The composition ratio fd is fixed at fd = 0.4 and the volume fraction ϕ is varied from data to data.
For clarity, each pressure for ϕ > 0.1 is shifted upward by increments of 0.1 in the pressure. The dashed
lines indicate the steady state values. The polymer model is HP38.
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Figure S4 (a) The average functionality ⟨g⟩ of the disk-shaped particles and (b) the pressure shown as
functions of the volume fraction ϕ . The filled symbols indicate the average values at 5 × 104τLJ < t ≤
1× 105τLJ and the open symbols indicate the steady state values. The composition ratio fd is fixed at
fd = 0.4 and the polymer model is HP38.
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Relaxation Times of Polymer and Disk-shaped Particle and Average Lifetime
of Physical Bond

In order to estimate the longest Rouse relaxation time τR of the HP38 polymer and the rotational
relaxation time τd of the disk-shaped particle, we calculate the autocorrelation function CR(t) ≡
⟨Ri(t) ·Ri(0)⟩/⟨|Ri(0)|2⟩ of the end-to-end vector of the polymer and the autocorrelation function
Cn(t) ≡ ⟨3[ni(t) · ni(0)]2 − 1⟩/2 of the normal vector of the disk-shaped particle without the bond
formation. Here, Ri(t) is the end-to-end vector of the i-th polymer at time t and ni(t) is the unit
normal vector of the i-th disk-shaped particle at time t. We then fit the autocorrelation functions
CR(t) and Cn(t) to exponentials AR exp(−t/τR) and Ad exp(−t/τd), respectively. Figure S5 shows the
autocorrelation functions. Figure S6 indicates the volume fraction ϕ dependences of the relaxation
times τR and τd. From Fig. S6, at the equilibrium swelling state (0.13 ≲ ϕ ≲ 0.33), the relaxation
times τR and τd are estimated to 1.8×102τLJ ≲ τR ≲ 5.0×102τLJ and 2.0×10τLJ ≲ τd ≲ 2.6×102τLJ,
respectively.
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Figure S5 The autocorrelation functions CR(t) and Cn(t) at (a) ϕ = 0.1, (b) ϕ = 0.2, and (c) ϕ = 0.3. The
composition ratio fd is fixed at fd = 0.5. The dashed lines indicate the fitting results.

0.0 0.1 0.2 0.3 0.4
10

0

10
1

10
2

10
3

τ
d

τ R
, 
τ d

φ

φ=0.13 φ=0.33

τ
R

range of the equilibrium

swelling state

Figure S6 The relaxation times τR and τd shown as functions of the volume fraction ϕ . The composition
ratio fd is fixed at fd = 0.5.

In order to evaluate the lifetime τa of the physical bonds, we monitor the frequency distribution
Plife(t) of the breakages of the physical bonds after time t of the physical bond formation. Figure
S7 shows the frequency distribution Plife(t). From the integral τa =

∫
tPlife(t)dt, we find that the

average lifetime τa is 9×103τLJ ≲ τa ≲ 1×104τLJ.
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Figure S7 The frequency distribution Plife(t) of the breakages of the physical bonds after time t of the
physical bond formation. The composition ratio fd is fixed at fd = 0.5 and the polymer model is HP38.

Detailed Conditions of Simulation
Tables S1 and S2 shows the detailed conditions of the simulation.

Supplementary Data of Simulation
Classification of Polymer Chains
In order to analyze the structures of clusters consisting of the disk-shaped particles and the poly-
mers, we classify parts of the polymer chains into the following five categories according to their
adsorbing structures of the polymeric bonds: bridge chain, dangling chain, loop chain, train chain,
and free chain (Fig. S8). The bridge chain indicates a part of a polymer which connects a pair of
disk-shaped particles (the red lines in Fig. S8). The dangling chain is a part from an unadsorbed
polymer end to the nearest adsorbed point along the polymer chain (the blue lines in Fig. S8). The
loop chain corresponds an unadsorbed part between two adsorbed points (the green lines in Fig.
S8). The train chain is a part in which two or more polymer beads are consecutively adsorbed on
a disk-shaped particle (the black lines in Fig. S8). The free chain is an unadsorbed polymer (the
violet lines in Fig. S8). Figure S9 shows the relative populations of each chain category as func-
tions of the composition ratio fd for the varying volume fraction ϕ . Here, the relative population
is the ratio of the number of each chain category to the total number of all the chain categories.
The relative population of the bridge chains sharply increases with increasing the composition ra-
tio fd at the relatively low composition ratios ( fd < 0.4) and gradually increases at the relatively
high composition ratios ( fd ≥ 0.4) (Fig. S9a). At the relatively low composition ratios ( fd < 0.4),
non-bridge chains composed of loop chains, dangling chains, train chains, and free chains exist at
a certain level (Fig. S9b-e). The non-bridge chains do not contribute to the network formation;
hence, we can say that the non-bridge chains delay the gelation of the systems at the relatively low
composition ratios ( fd < 0.4).
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Table S1 The detailed conditions of the simulation to study the network structures.

polymer fd Np Nd ϕ La

HP38 & MP38 0.1 135 30 0.02 ∼ 0.4 53.04 ∼ 19.54
HP38 & MP38 0.2 120 60 0.02 ∼ 0.4 53.04 ∼ 19.54
HP38 & MP38 0.3 105 90 0.02 ∼ 0.4 53.04 ∼ 19.54
HP38 & MP38 0.4 90 120 0.02 ∼ 0.4 53.04 ∼ 19.54
HP38 & MP38 0.5 75 150 0.02 ∼ 0.4 53.04 ∼ 19.54
HP38 & MP38 0.6 60 180 0.02 ∼ 0.4 53.04 ∼ 19.54
HP38 & MP38 0.7 45 210 0.02 ∼ 0.4 53.04 ∼ 19.54
HP38 & MP38 0.8 30 240 0.02 ∼ 0.4 53.04 ∼ 19.54
HP38 & MP38 0.9 15 270 0.02 ∼ 0.4 53.04 ∼ 19.54
HP19 0.1 270 30 0.02 ∼ 0.4 53.04 ∼ 19.54
HP19 0.2 240 60 0.02 ∼ 0.4 53.04 ∼ 19.54
HP19 0.3 210 90 0.02 ∼ 0.4 53.04 ∼ 19.54
HP19 0.4 180 120 0.02 ∼ 0.4 53.04 ∼ 19.54
HP19 0.5 150 150 0.02 ∼ 0.4 53.04 ∼ 19.54
HP19 0.6 120 180 0.02 ∼ 0.4 53.04 ∼ 19.54
HP19 0.7 90 210 0.02 ∼ 0.4 53.04 ∼ 19.54
HP19 0.8 60 240 0.02 ∼ 0.4 53.04 ∼ 19.54
HP19 0.9 30 270 0.02 ∼ 0.4 53.04 ∼ 19.54
a The length of a side of the simulation box.

Table S2 The detailed conditions of the simulation to study the stresses and the network structures under
the uniaxial elongation.

polymer fd Np Nd ϕeq
a Leq

b

HP38 0.2 480 240 0.130 45.13
HP38 0.3 420 360 0.293 34.42
HP38 0.4 360 480 0.333 32.99
HP38 0.5 300 600 0.293 34.41
HP38 0.6 240 720 0.246 36.47
HP38 0.7 180 840 0.164 41.76
MP38 0.2 480 240 0.164 41.74
MP38 0.3 420 360 0.305 33.94
MP38 0.4 360 480 0.333 32.98
MP38 0.5 300 600 0.297 34.25
MP38 0.6 240 720 0.249 36.34
MP38 0.7 180 840 0.162 41.88
HP19 0.4 720 480 0.319 33.44
HP76 0.4 180 480 0.328 33.14
MP19 0.4 720 480 0.324 32.27
MP76 0.4 180 480 0.332 33.00
a The volume fraction at the equilibrium swelling state.
b The length of a side of the simulation box at the equilibrium swelling state.
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Figure S8 Five types of chain categories: bridge chain (red line), dangling chain (blue line), loop chain
(green line), train chain (black line), and free chain (violet line). The orange spheres indicate the adsorbed
beads.

In Figs. S10-S12, we show the effects of the polymer models on the relative populations of
each chain category. At the relatively low composition ratios ( fd ≤ 0.3), the sum of the relative
populations of dangling chains and free chains decreases by the extension of the polymer length
(HP19→HP38) or the introduction of the irreversible bonds between the polymer ends and the
disk-shaped particles (HP38→MP38). These results mean that unadsorbed dangling ends decrease
with increasing the irreversible bonds. At the low volume fraction ϕ and the low composition ratio
fd, the system including HP38s shows the increment of the relative populations of the free chains.
However, since MP38s are grafted to the disk-shaped particles, the relative population of the free
chains for MP38s does not increase within the range of 0.1 ≤ fd ≤ 0.9. Instead of the increment
of the free chains, the relative population of the dangling chains for MP38s increases at the low
volume fraction ϕ and the low composition ratio fd. Therefore, the relative population of the
dangling chains for MP38s is larger than that for HP38s at fd = 0.1 in Fig. S10b. At the relatively
high composition ratios ( fd ≥ 0.4), where all beads belonging to the polymers can form the physical
bonds with the disk-shaped particles and the effects of the dangling ends decrease, the differences
between the polymer models reduce. These results are consistent with the results of the sol-gel
transition concentration ϕgel and the equilibrium swelling ratio qeq in the main text.

Evaluation of Equilibrium Swelling Ratio
To estimate the equilibrium swelling volume Veq at which the stress σdiag becomes 0, we carried out
1×105τLJ simulation under a certain volume V and took the average over the later 5×104τLJ as the
result at V . We then plotted the stress σdiag against the volume V and interpolated the stress σdiag
around the intersection with σdiag = 0 (Fig. S13). We then defined the equilibrium swelling ratio
as qeq ≡ Veq/Vdry. Here, Vdry is the volume corresponding to the molten state where the number
density of beads is equal to 0.851–3.

Figure S14 shows the volume fraction ϕ dependences of the percolation probability P and the
sol fraction. At the volume fraction ϕeq of the equilibrium swelling state (Table S2), the percolation
probability P is equal to 1, i.e., the percolating cluster which can be regarded as an infinite network
always exists during the simulation. The sol fraction is less than 0.03 at ϕeq. Furthermore, since
the polymers form multiple physical bonds with the disk-shaped particles, the polymers are hardly
desorbed from the disk-shaped particles. Therefore, we consider that the systems at the equilibrium
swelling state form the stable networks.
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Figure S9 Relative populations of each chain category shown as functions of the composition ratio fd: (a)
bridge chains, (b) dangling chains, (c) free chains, (d) loop chains, and (e) train chains. The volume fraction
ϕ is varied from data to data: ϕ = 0.04 (■), ϕ = 0.08 (⃝), ϕ = 0.16 (▲), ϕ = 0.24 (▽), and ϕ = 0.32 (♦). The
polymer model is HP38.
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Figure S10 Relative populations of each chain category shown as functions of the composition ratio fd: (a)
bridge chains, (b) dangling chains, (c) free chains, (d) loop chains, and (e) train chains. The polymer model
is varied from data to data: HP38 (■), HP19 (⃝), and MP38 (▲). The volume fraction ϕ is fixed at ϕ = 0.08.
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Figure S11 Relative populations of each chain category shown as functions of the composition ratio fd: (a)
bridge chains, (b) dangling chains, (c) free chains, (d) loop chains, and (e) train chains. The polymer model
is varied from data to data: HP38 (■), HP19 (⃝), and MP38 (▲). The volume fraction ϕ is fixed at ϕ = 0.16.
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Figure S12 Relative populations of each chain category shown as functions of the composition ratio fd: (a)
bridge chains, (b) dangling chains, (c) free chains, (d) loop chains, and (e) train chains. The polymer model
is varied from data to data: HP38 (■), HP19 (⃝), and MP38 (▲). The volume fraction ϕ is fixed at ϕ = 0.24.
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Figure S14 The percolation probability P shown as a function of the volume fraction ϕ for the polymer
models (a) HP38 and (b) MP38. The sol fraction shown as a function of the volume fraction ϕ for the
polymer models (c) HP38 and (d) MP38.
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Evaluation of Elongation Ratio λ ∗

We estimate the elongation ratio λ ∗ at which the slope of the elongation stress σue changes from
the point of intersection between the tangent line at 1≤ λ ≤ 1.2 and that at 2≤ λ ≤ 2.5 (Fig. S15a).
Figure S15b shows the elongation ratio λ ∗ as a function of the number density νb,eq of the bridge
chains at the equilibrium swelling state. As seen in Fig. S15b, the elongation ratio λ ∗ is almost
independent of the polymer models and decreases with increasing the number density νb,eq of the
bridge chains.
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Figure S15 (a) The examples of the estimation method of the elongation ratio λ ∗. (b) The elongation ratio
λ ∗ shown as a function of the number density νb,eq of the bridge chains at the equilibrium swelling state.

Effects of Polymer Model on Network Structures
Figure S16 shows the weight average cluster size ⟨ncls⟩ and the sol fraction for the networks con-
sisting of MP38s and the disk-shaped particles as functions of the elongation ratio λ . Figures S17
shows the examples of the network structures at the equilibrium swelling state (λ = 1) and at the
elongated state (λ = 2 and λ = 4). The results indicate the same behaviors as the results shown in
Figs. 10 and 11 in the main text. The weight average cluster size ncls rarely changes at the fracture
elongation λf. Therefore, we find that the networks are fractured with one fracture surface. The
weight average cluster size ⟨ncls⟩ for fd = 0.7 slightly increases before the fracture elongation λf and
the sol fraction decreases. Hence, we think that the small clusters are incorporated in the network
by the adsorption on the surfaces of the less dense region under this condition.

Figure S18 shows the average functionality ⟨g⟩ of the disk-shaped particles and the average
number ⟨nb⟩ of beads per bridge chain for the networks consisting of MP38s and the disk-shaped
particles as functions of the elongation ratio λ . In Figs. S19 and S20, we present the effects of the
number np of beads per polymer chain on the structures of the bridge chains. All of the polymer
models show the same behavior. The average functionality ⟨g⟩ of the disk-shaped particles and the
average number ⟨nb⟩ of beads per bridge chains are almost constant at the small elongation ratios
(λ < λ ∗) where the stress sharply increases. At the large elongation ratios (λ > λ ∗), the average
functionality ⟨g⟩ of the disk-shaped particles decreases and the average number ⟨nb⟩ of beads per
bridge chains increases.

Orientations of Disk-shaped Particles and Polymers for Monofunctional Poly-
mer Model

Figure S21 shows the results of the orientations of the disk-shaped particles and the polymers for
the networks consisting of the disk-shaped particles and MP38s. The polymers are oriented in a
direction parallel to the elongation direction and the normal vectors of the disk-shaped particles
are oriented in a direction perpendicular to the elongation direction. The change rate −∆Cd/∆λ
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Figure S16 The weight average cluster size ⟨ncls⟩ and the sol fraction shown as functions of the elongation
ratio λ . Here, nt is the total number of beads. The composition ratio fd is varied from data to data: fd = 0.2
(■), fd = 0.3 (⃝), fd = 0.4 (▲), fd = 0.5 (▽), fd = 0.6 (♦), and fd = 0.7 (×). The polymer model is MP38.

approaches 0 more rapidly than ∆Cp/∆λ at small elongation ratio. Therefore, the orientation of the
disk-shaped particles saturates prior to the orientation of the whole polymer chains. These results
of the orientations are the same as those of the networks including HP38s instead of MP38s.

Effects of Elongation Rate on Mechanical Properties

In order to study the effects of the elongation rate λ̇ on the mechanical properties of the network,
we performed the simulation with varying the elongation rate λ̇ . We here used the small systems
of nt = 5.7×103 and took the average over 12 independent runs. Figure S22 shows the elongation
stress σue as a function of the elongation ratio λ . The elongation stresses σue for different elonga-
tion rates λ show the same trend; the elongation stresses σue sharply increase with increasing the
elongation ratio λ , decrease the slope, and then reach the fracture elongation λf. With decreasing
the elongation rate λ̇ , the elongation stress σue and the elongation ratio λ ∗ at which the slope
of the elongation stress σue changes decrease. The decreases of the elongation stress σue and the
elongation ratio λ ∗ are considered to be due to the restructuring of network structures via the re-
combination of the physical bonds. At the low elongation rate λ̇ , the total simulation time for the
uniaxial elongation becomes comparable to the average lifetime τa of the physical bonds; hence,
the influence of the recombination of the physical bonds increases. We think that the physical gel
like properties of our simulation model are emphasized at the low elongation rates. Since we used
the small systems in this section, the fracture elongation λf does not show clear dependence on the
elongation rate λ̇ (Table S3). To study the fracture elongation λf, it is necessary to calculate using
the large system of nt = 2.28×104.

Table S3 The fracture elongation λf with varying the elongation rate λ̇ .

polymer fd λ̇ λf

HP38 0.4 2×10−3 4.4
HP38 0.4 1×10−3 3.8
HP38 0.4 5×10−4 4.1
HP38 0.4 2×10−4 4.7
MP38 0.4 2×10−3 > 5
MP38 0.4 1×10−3 > 5
MP38 0.4 5×10−4 > 5
MP38 0.4 2×10−4 4.6
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(a) (b)

(c)

Figure S17 The network structures consisting of the MP38 polymers and the disk-shaped particles at (a)
λ = 1, (b) λ = 2, and (c) λ = 4. The cylinders indicate the polymer bonds. The red, green, and yellow beads
indicate the grafting beads of the MP38 polymers, the grafted beads of the disk-shaped particles, and other
beads of the disk-shaped particles, respectively. The composition ratio fd is fd = 0.4.
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Figure S18 (a) The average functionality ⟨g⟩ of the disk-shaped particles and (b) the average number ⟨nb⟩
of beads per bridge chain shown as functions of the elongation ratio λ . The composition ratio fd is varied
from data to data: fd = 0.2 (■), fd = 0.3 (⃝), fd = 0.4 (▲), fd = 0.5 (▽), fd = 0.6 (♦), and fd = 0.7 (×). The
polymer model is MP38.
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Figure S19 (a) The average functionality ⟨g⟩ of the disk-shaped particles and (b) the average number ⟨nb⟩
of beads per bridge chain shown as functions of the elongation ratio λ . The number np of beads per polymer
is varied from data to data: np = 38 (■), np = 19 (⃝), and np = 76 (▲). The composition ratio fd is fd = 0.4.
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Figure S20 (a) The average functionality ⟨g⟩ of the disk-shaped particles and (b) the average number ⟨nb⟩
of beads per bridge chain shown as functions of the elongation ratio λ . The number np of beads per polymer
is varied from data to data: np = 38 (■), np = 19 (⃝), and np = 76 (▲). The composition ratio fd is fd = 0.4.
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Figure S21 (a) The orientational correlation along the elongation direction of the normal vector of the disk-
shaped particles (■), that of the end-to-end vector of the polymers (⃝), and that of the polymeric bonds
(▲) shown as functions of the elongation ratio λ . (b) The change rate of the orientational correlation of the
disk-shaped particles (■), that of the polymers (⃝), and that of polymeric bonds (▲) shown as functions of
the elongation ratio λ . The polymer model is MP38 and the composition ratios fd is fd = 0.3.
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Figure S22 The stress-strain curves for the polymer models (a) HP38 and (b) MP38. The elongation
rates λ̇ is varied from data to data: λ̇ = 2× 10−3τ−1

LJ (■), λ̇ = 1× 10−3τ−1
LJ (⃝), λ̇ = 5× 10−4τ−1

LJ (▲), and
λ̇ = 2×10−4τ−1

LJ (▽). The composition ratio fd is fixed at fd = 0.4.

Cross-linked Polymer Network
In order to investigate the relationships between the network structures and the mechanical prop-
erties, we prepare the model network consisting of linear polymers and small cross-linkers. The
linear polymer chain consists of np = 38 beads and the cross-linker consists of one bead. This linear
polymer chain is the same as the HP38 polymer in the main text. We assume that the cross-linker
can form physical bonds with two polymer beads. If the networks are ideally formed, the cross-
linkers act as four branch cross-linking points. We here employ the same potentials as that for the
nanocomposite network: the LJ potential, the FENE potential, and the FENE-C potential.

We first placed Np polymers and Nc cross-linkers at random in the cubic simulation box with
periodic boundary conditions. After equilibration of 5×104τLJ calculation, we applied the uniaxial
deformation in the same manner as the nanocomposite networks. We fixed the total number
nt ≡ npNp +Nc of beads at nt = 5.7× 103 and varied the composition ratio fc ≡ Nc/nt of the cross-
linkers. The volume fraction ϕ was set to the volume fraction at the equilibrium swelling state of
the corresponding nanocomposite network of fd = fc.

Table S4 shows the tensile modulus E and the characteristic values of the network structures.
The functionalities ⟨g⟩ of the cross-linkers are smaller than those of the disk-shaped particles in
the corresponding nanocomposite networks. The cross-linked polymer networks indicate smaller
tensile moduli E than those of the nanocomposite networks. Due to the smaller functionalities ⟨g⟩
of the cross-linkers, a great number of bridge chains in the cross-linked polymer networks may be
elastically ineffective. On the other hand, almost all of the bridge chains in the nanocomposite
networks are considered to be elastically effective because of the high functionalities of the disk-
shaped particles.

Table S4 The tensile modulus E and the characteristic values of the network structures of the cross-linked
polymer networks.

fc E ⟨g⟩ νb

0.2 0.05 2.35 0.058
0.3 0.70 3.18 0.267
0.4 0.70 2.54 0.323
0.5 0.24 1.69 0.236
0.6 0.09 1.10 0.155
0.7 0.01 0.68 0.074
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