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I. SIMULATION OF MECHANICAL
SPECTROSCOPY

In order to obtain G′, G′′ from molecular dynamics
simulations, we apply a sinusoidal shear strain to the
simulation cell and measure the resulting instantaneous
stress Pxy obtained from the virial tensor. In Fig. 1 we
show an example of the data for the time dependence
of Pxy as well as the corresponding stress-strain curves
(Lissajous figures) for three frequencies at T = 0.05. The
LAMMPS code was used for all shear simulations.

II. EQUIVALENCE OF RESULTS OBTAINED
FROM SIMPLE AND PURE SHEAR IN THE

LIMIT OF SMALL DEFORMATIONS

In simulations we use simple shear to obtain the vis-
coelastic moduli. The theory, however, predicts the val-
ues of these quantities for a pure shear deformation. Here
we show that in the case of small deformations the results
produced by a simple shear are equivalent to the results
produced by a pure shear.

The following deformation tensors for the coordinate
transform r′ = ûr for pure and simple shear, correspond-
ingly, read:

ûpure =

cos(γ/2) sin(γ/2) 0
sin(γ/2) cos(γ/2) 0

0 0 1

 , (1)

ûsimple =

1 tan(γ) 0
0 1 0
0 0 1

 . (2)

We now consider only central forces with U(γ) =
κ
2

∑
ij (rij(γ) − r0)

2
. For the pure shear:

r′ij =
√
r2ij + 2rxijr

y
ij sin γ,

∂r′ij
∂γ

∣∣∣∣
γ=0

= rij n̂
x
ij n̂

y
ij ,

∂r′ij
∂ri

∣∣∣∣
γ=0

= −n̂ij . (3)

Hence, the affine shear modulus and affine force field are
(cf. definitions in the SI of [1]):

GApure = κ
∑
ij

r2ij
(
n̂xij n̂

y
ij

)2
, Ξi,pure = −κ

Z∑
ij

rij n̂
x
ij n̂

y
ij n̂ij .

(4)
For simple shear

r′ij =
√
r2ij + 2rxijr

y
ij tan γ + (ryij tan γ)2,

∂r′ij
∂γ

∣∣∣∣
γ=0

= rij n̂
x
ij n̂

y
ij ,

∂r′ij
∂ri

∣∣∣∣
γ=0

= −n̂ij . (5)

Since the derivatives of r′ij are the same as for pure
shear, the values of the shear modulus and the affine
force field should be the same as well. The reason for
this equivalence is that, for small deformations, pure and
simple shear can be inter-converted by a solid rotation of
an angle γ/2.

III. CHANGE OF THE NUMBER OF NEAREST
NEIGHBORS WITH TEMPERATURE

In this section, we show an insight into the dynamical
changes of the bead positions in order to illustrate the
reasons for the applicability of the theory at non-zero
temperatures. Two beads are considered to be neigh-
bors if the distance between their positions is smaller
than 1.2. Positions of the beads are compared at ev-
ery tenth of an external force period. To enumerate the
number of changes, we count all new pairs which were
formed, and all cases when two beads became separated,
within this time. In Fig. 3 the average of change of the
number of nearest neighbors is shown for three different
frequencies and different temperatures. At all tempera-
tures the beads move more in the case of low frequencies,
i.e. at low frequencies the beads have time to adjust
their positions and move between the cages. With an
increase of temperature more and more beads become
mobile, which should lead to the violation of harmonic
approximation and, hence, our non-affine approach. This
explains why the combination of INM and non-affine the-
ory performs rather poorly at low frequencies. On the
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Figure 1: Top: Instantaneous shear stress as a function of time for low, middle and high frequencies, correspondingly (left
to right). Bottom: Evolution of the instantaneous shear stress during cycles of applied shear strain for low, middle and high
frequencies, correspondingly(left to right).

Figure 2: Simple vs. pure shear deformations. (a) illustrates
pure shear. The perimeter of the box is kept constant while
the cross section area decreases with an increase of γ. (b)
shows simple shear. The cross-section area stays constant
while right and left side of cross section parallelogram be-
comes longer.

contrary, at high frequencies the bead positions are con-
siderably more stable. Hence for high frequencies the
harmonic approximation holds, which explains why non-
affine theory produces correct predictions of viscoelastic
moduli values even at temperatures around and above
glass transition.

A substantial difference between the low and the high
frequencies comes from the time resolution, which is pe-
riod dependent. In Fig. 4 we show the comparison
of nearest neighbor number changes with and without
shear. It is clear that shear-induced changes are largest
at low frequencies.
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Figure 3: Change of the number of nearest neighbors per
atom as a function of temperature and frequency of the shear-
ing force for periods t = 0.01(black squares), t = 0.2 (blue
squares), t = 80 (red circles). The positions of atoms are
compared with the time resolution of t/10. The values ob-
tained over 10 periods were averaged.
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Figure 4: The change of the neighbors in the case of sheared
and undeformed samples at low and high frequencies. The
absolute value of the difference is larger for the low frequency,
which illustrates that at low frequencies many more atoms
have time to relax their positions.


