Supporting Information

Patchy colloidal particles at the fluid-fluid interface

Chung Chi Chio, Steve Ying-Lung Tse¹

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China

¹ Email: stevetse@cuhk.edu.hk

Fig. S1 Rough particle models. The patches, which are shown as orange spheres, were centered at the colloidal particle surface. The radius of the patches was 1.0σ . Exact coordinates of the labelled patches are provided in table S1. Each red arrow indicates the orientation vector of the colloidal particle.

Patch	x	У	Z
А	1.49094	1.49094	1.34321
В	-1.49094	1.49094	1.34321
С	-1.49094	-1.49094	1.34321
D	1.49094	-1.49094	1.34321
Е	1.49094	1.49094	-1.34321
F	-1.49094	1.49094	-1.34321
G	-1.49094	-1.49094	-1.34321
Н	1.49094	-1.49094	-1.34321
W	1.76777	1.76777	0
Х	-1.76777	1.76777	0
Y	-1.76777	-1.76777	0
Z	1.76777	-1.76777	0

Table S1 Exact coordinates (in σ) of patches from the center of colloidal particle with the orientation vector (red arrow in Fig. S1) pointing towards the *z*-axis.

Fig. S2 a) Plot of normalized number density of fluid particles as a function of z coordinate and radial distance r from Full8 rough particle with patch radius 1.5σ center at $\langle z_p \rangle = -3\sigma$. r had a circular symmetry, and the density was divided by r so that it was constant for large distances. b) Same as a), but $\langle z_p \rangle = -4\sigma$.

Fig. S3 a) Plot of normalized number density of fluid particles as a function of z coordinate and radial distance r from Top4 rough particle with patch radius 1.5σ center at $\langle z_p \rangle = -3\sigma$. r had a circular symmetry, and the density was divided by r so that it was constant for large distances. b) Same as a), but $\langle z_p \rangle = -4\sigma$.

Fig. S4 a) Plot of normalized number density of fluid particles as a function of z coordinate and radial distance r from Equ4 rough particle with patch radius 1.5σ center at $\langle z_p \rangle = -3\sigma$. r had a circular symmetry, and the density was divided by r so that it was constant for large distances. b) Same as a), but $\langle z_p \rangle = -4\sigma$.