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Colloidal stability dictates drop breakup under electric fields
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Boundary integral computations with insoluble surfactant

The procedure to evaluate the transient drop shapes is to sequentially solve for the electric

field inside and outside the drop, and fluid flow inside and outside the drop, with interface

conditions accounting for stress balance, charge conservation and surfactant transport.

Electric field

The drop and medium phases are weakly conducting and electrically neutral. Hence, Gauss’s

law for electrostatics reduces to the Laplace equation in the electrostatic potential, giving in

dimensionless form ∇2φi,o = 0, and the electric field is given by Ei,o=−∇φi,o.1–3 The sub-

scripts denote the drop (i) and medium (o) phases, respectively. The electric field in the medium

approaches the external applied electric field at large distances from the drop, along with the

interface conditions,2–4

Et,o = Et,i, (1)

and

En,o − SEn,i = q, (2)

where the subscripts t and n denote the tangential and normal components of the electric field

respectively, q is the surface charge density, and S = εi/εo is the permittivity ratio between the
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drop and medium phases. The Laplace equation can be recast into a non-dimensional integral

equation, which can be simplified using interface condition (2) to3,4

S − 1

4πS

∮
A

r·n(x)

r3
En,o(y)dA(y)+

S + 1

2S
En,o(x) = E∞·n(x)− 1

4πS

∮
A

q(y)dA(y)+
1

2S
q(x). (3)

Here, r=y−x is the distance between an observer point y that can move along the interface,

and a source point x on the interface (figure 1).

The tangential component of the electric field is solved by an integral transformation of the

Laplace equation in terms of the electrostatic potential and using Ei,o=−∇φi,o. The integral

equation to be solved is3,4

φo(x) = φ∞(x) +

∮
A

1

4πr
(En,o(y)− En,i(y))dA(y). (4)

The interface is initially uncharged, hence the electric field can be calculated at t = 0. After

evaluating the electric field, the jump in electric traction at the interface is computed using

[τe·n] =
1

2
[(E2

n,o − SE2
n,i) + (S − 1)E2

t,o]n+ Et,o(En,o − SEn,i)t, (5)

where τ e(i,o) = Ei,oEi,o − E2
i,oI/2 is the dimensionless form of the Maxwell stress tensor, and

t is the unit vector along the tangential direction.

Fluid flow

The tangential component of the electric traction drives a fluid flow. We assume creeping flow

in this study, and use the Stokes equations to compute the flow field. The integral representation

of the Stokes equations in dimensionless form is given by3

uo(x) = − 1

4π(M + 1)

∮
A

∆f(y)·J(y,x)dA(y)− 1

4π

M − 1

M + 1

∮
A

uo(y)·K(y,x)·n(y)dA(y), (6)
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where J and K denote the free-space Green’s functions for velocity and stress,3 respectively,

M = µi/µo is the viscosity ratio between the drop and medium phases, and

∆f =
2κ

Cao
n− 1

Cao
∇sγ − [τe·n] (7)

is the jump in hydrodynamic traction at the interface, where κ is the mean curvature,4 and γ

denotes the interfacial tension.

Interfacial charge conservation

The surface charge density is updated after obtaining the interfacial velocity using5,6

1

R
En,i − En,o = Sao

∂q

∂t
+Reo∇s· (usq), (8)

where, R = χi/χo is the ratio of resistivity between the drop and medium phase, the Saville

number5 Sao = τe,o/τc,o, represents a ratio of the charging timescale τe,o = εoχo to the capillary

timescale τc,o = µoa/γ, and the electric Reynolds number7 Reo = τe,o/τf , which represents a

ratio of the charging timescale to the flow timescale τf = a/U . The first term in the right hand

side represents transient charging of the interface, and the second term denotes the convection

of surface charge by the induced flow.

Interfacial surfactant transport

Next, the surfactant distribution at the interface is updated using a convection-diffusion

equation,8

1

Cao

∂Γ

∂t
+∇s·(usΓ) + (us·n̂)κΓ− 1

Pes
∇2

sΓ = 0. (9)

Here, Γ is the surfactant concentration at the interface made dimensionless by the maximum

surfactant coverage at the interface (Γ∞), κ is the curvature, and Pes =
a2εoE

2
∞

Dsµo
is the surface

Peclet number, which denotes the rate of surfactant transport by convection to diffusion along

the interface, Ds being the surface diffusion coefficient. In (9), the second term represents the

convection of surfactant by the flow, the third term denotes changes in surfactant concentration

due to dilation of the interface, and the last term represents the lateral diffusion of surfactant
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along the interface. The surfactant is initially distributed uniformly at the interface. The

interfacial tension, γ, is related to Γ through an equation of state. We use the von Szyskowski

equation of state,

γ = γ0 + E ln(1− Γ), (10)

where γ0 is the interfacial tension in the absence of surfactant, and the elasticity number,

E =
RTΓ∞
γeq

is a measure of the sensitivity of the interfacial tension to Γ, R is the universal gas

constant, and T is the temperature. The interfacial tension has been non dimensionalised by

the equilibrium interfacial tension value in the presence of surfactant, γeq. The equation of state

permits the rewriting of the stress balance condition (7) in terms of the surfactant concentration

as

∆f =
2κ

Cao
n− Ma

1− Γ
∇sΓ− [τe·n], (11)

where, Ma = E/Cao is the Marangoni number which represents the ratio of Marangoni stresses

to viscous stresses.

Finally, the interface is updated using the kinematic condition

dx

dt
= Cao(us·n)n. (12)

Numerical scheme

Equations (3), (4) and (6) are sequentially solved using the boundary integral method. The

details of the numerical method have been discussed in detail by previous publications from our

group,3,4 and only reviewed here. The field and flow are assumed to be axisymmetric, which

allows an analytical integration over the azimuthal direction, reducing surface integrals to line

integrals over the contour of the drop. The top half of the drop is divided into N elements,

creating N + 1 nodes. The nodes are called source points, and their coordinates are denoted

by x (figure 1). All variables of interest are interpolated as cubic splines with respect to the

arc length, s. The integral over the contour of the drop is expressed as a sum of integrals

over each element. Singular terms in the integrand are subtracted out, and then added back,

following standard regularization techniques.9 The integrals are evaluated using Gauss-Legendre

quadrature. The points at which the integral are evaluated are referred to as observer points,
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and their coordinates are denoted by y. After the electric field and fluid flow is calculated, the

surface charge density (8), surfactant concentration (9), interfacial tension (10) and shape of the

interface (12) are updated using the second-order Runge-Kutta method. Then, the deformation

of the drop is calculated at every time instant. The time step and N is chosen to ensure that the

volumetric flow rate across the interface, which should identically be zero to conserve mass, is at

most O(10−6) for the initial 20 iterations. This ensures numerical stability of the computations.

If the volumetric flow rate across the interface remains O(10−6) or less, while the maximum

value of the radial velocity keeps on decreasing, and reaches O(10−4) or less, we conclude that

the drop has attained a steady shape. If the volumetric flow rate slowly starts to increase, along

with an increase in the maximum value of the radial velocity, we conclude that the drop shape

will be unsteady, and it will break up. The boundary integral method cannot track the interface

after the drop breaks, and in this case, the results are reported at a time instant very close to

breakup, where the ratio of volumetric flow rate across the interface to the initial volumetric

flow rate is around O(102).

φθ

θ=0θ=π

Figure 1: Schematic of discretization of the undeformed drop.
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