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Note 1: Molecular Dynamics Modelling 

N1.1 Force field The individual components of the total force field energy are:
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where , ,  and  are the numbers of bonds, angles, dihedrals and atoms, 𝑁𝑏𝑜𝑛𝑑 𝑁𝑎𝑛𝑔𝑙𝑒 𝑁𝑡𝑜𝑟𝑠𝑖𝑜𝑛 𝑁

respectively;  and  are the distance and coefficient of bond between particles  and , 𝑟𝑖𝑗 𝐾𝑏𝑖𝑗 𝑖  𝑗

respectively;  and  are the angle and coefficient of angle formed among particles , 𝜃𝑖𝑗𝑘 𝐾𝑎𝑖𝑗𝑘 𝑖

 and , respectively;  and  are the dihedral angle and coefficient of dihedral 𝑗 𝑘 𝜙𝑖𝑗𝑘𝑙 𝐾𝑛𝑖𝑗𝑘𝑙

among particles , ,  and , respectively. For the Lenard-Jones contribution,  is the depth 𝑖 𝑗 𝑘 𝑙 𝜖𝑖𝑗

of the potential and  is the finite distance at which the inter-particle potential is zero. 𝜎𝑖𝑗

They can be determined from geometric combination rules such as 

). For the Coulomb electrostatic interactions, , is charge 𝜎𝑖𝑗 = (𝜎𝑖𝑖𝜎𝑗𝑗)
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and  is the dielectric constant.𝜖

All atoms optimized potential for liquid simulation (OPLS- AA) contains functional forms 

for bond, angle, and dihedral deformations among bonded interactions. We use this force 

field for all our MD calculation since it was found in close agreement with the density 

functional theory [32-34]. For any atom type in the polyurea structure, force field 

parameters were chosen by matching the atom type with its corresponding atom defined in 



the OPLS parameter database. The cut-off for all MD simulations was also considered as 

10 Angstrom. 

N1.2 Molecular structures and properties Polyurea aerogels (PUAs) result from the 

reaction of aliphatic triisocyanates and water [3, 4], forming interconnected polymer chains 

with isocyanurate cores and urea linkage as illustrated in Fig. S1a-b. By comparing the 

atomic structures simulated from molecular dynamics with x-ray diffraction results, about 

eight polymer chains were identified in a primary particle as shown in Fig. S1c. The 

polymer chains of various primary particles were entangled together to form bonding, 

eventually giving rise to a secondary particle as illustrated in Fig. 3d. The open polymer 

chains in the outer primary particles of each secondary particle were randomly connected 

to form a fibrous structure of PUA, as illustrated in Fig. S1e. As the basic building block, 

the primary particle is the material genome for the mechanical properties, which will be the 

focus of the MD simulation.

`
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Fig. S1 Hierarchical structures of PUAs: (a) chemical structure of isocyanurate core with 

urea linkages, (b) interconnected polymer chains, (c) primary particle formed with cluster 

of polymer chains, (d) secondary particle formed with cluster of primary particles, (e) 

network nanostructure of PUAs formed with linked secondary particles.

For the primary particle, our system of study consists of 8 layers of third generation 

aromatic polyurea chains (Fig. S2a). ant it has an initial configuration as it shown in Fig. 

S2b, in which, two stacks of layers are perpendicular together, where, each stack consists 

of four layers and the distance between the layers is equal to 4 Angstrom as illustrated in 

Fig. S2b. As shown in Fig. S2c-f, the polymer chains start to tangle at the beginning stages 

(30 ps and before), as time elapses, the tangled chains form a sphere, which has radius 

approximately 6.4 nm. This is quite close to the 7-nm estimation from experiment. To 

demonstrate the strong interactions between the primary particles, we conducted a tension 

simulation by fixing the box size and applying a uniaxial stretch of two primary particles 

of with different overlapping distances as shown in Fig. S1g. All of the force-distance 

responses show linear, nonlinear ascending stages followed by a peak strength and the slow 

force-decreasing force stage. The failure was found to initiate when the stable distance for 

LJ potentials between particles was exceeded in the contact zone between two particles. 

The residual strength mainly comes from the polymer chain entanglement. In addition, the 

tensile and residual strength increase with the increasing overlapping distance. This 

indicates that the polymer chain entanglement mainly contributes to the strength of the 

PUA nanostructures. However, the elastic stiffness, which is the slope of the linear 

ascending stage, does not vary significantly. This indicates that the elastic modulus of all 

PUA is constant due to the same internal structure of the primary particle. Therefore, we 

can assume a constant elastic’s modulus for the base materials of all PUAs. However, 



without knowing the exact overlapping distance, the specific yield and residual strength 

remain undetermined from MD results. It also should be noted here that the viscoelasticity 

was not modelled since the modelling time is relative short. However, this approximation 

will not reverse the claimed assumption that the base material properties should be same 

given the same primary particle structure.

Fig. S2 Determine primary structure of PUA: (a) aromatic chain monomer component and 

structure, the brown, red, green and blue colors indicate carbon, oxygen, nitrogen, and 

hydrogen atoms, respectively, (b) initial configuration of stacked chain structure for 



primary particle, (c) primary particle structure at t = 0 s prior to annealing, (d) t = 90 ps, (e) 

t = 200 ps, (f) t = 2ns after annealing. (g) Force-distance relationship of two primary 

particles with overlapping distances of: 2 nm (red), 4 nm (black), and 6.4 nm (blue), insert 

shows failure process and evolution of connecting radius during separation.

Note 2: Extraction of Elastic Relaxation Modulus 

From the proposed approach by Huang and Lu [16], the force ( ) and displacement ( ) 𝑃 𝛿

relation for a linearly ramped displacement loading, , can be expressed as,𝛿(𝑡) = 𝛿0𝑡
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Therefore, by selecting the form for the relaxation modulus, we have
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Where  is the time independent elastic modulus,  and  are the time dependent 𝐸∞ 𝐸𝑖 𝜆𝑖

coefficients. By fitting the experimental data as illustrated in Fig. S3, the extracted values 

for PUA-11, 16, and 24 are,

(S4a)𝐸(𝑡)11 = 𝐸∞,11(1 + 𝐶11𝑒 ‒ 0.1𝑡 + 𝐷11𝑒 ‒ 0.01𝑡)

(S4b)𝐸(𝑡)16 = 𝐸∞,16(1 + 𝐶16𝑒 ‒ 0.1𝑡 + 𝐷16𝑒 ‒ 0.01𝑡)



(S4c)𝐸(𝑡)11 = 𝐸∞,24(1 + 𝐶24𝑒 ‒ 0.1𝑡 + 𝐷24𝑒 ‒ 0.01𝑡)

After fitting all experimental data, it was found that  varies with indentation depths while 𝐸∞

 and  remains almost constant for each type of PUA. The extracted values for  and  𝐶 𝐷 𝐶 𝐷

are listed in Table S1. We also found that these coefficients change slightly for different 

type of PUAs.

Table S1 Time-dependent coefficients for PUAs

PUA-11 PUA-16 PUA-24

C 0.051±0.005 0.045±0.003 0.048±0.006

D 0.11±0.002 0.12±0.007 0.11±0.004

(a)

(b)
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Fig. S3 Extraction of elastic relaxation modulus (a) typical force-displacement response, 

(b) fitting between experiment and analytical values.

Note 3: Porosity Dependent Strain Hardening

The isotropic strain hardening is coupled with the porosity variation. In this model, the total 

elastic strain energy density of a material integration point  at the onset of yield for a 𝑤𝑒

hydrostatically pressurized condition is,
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where  is the total stress tensor;  is the total elastic strain tensor,  is the 𝜎𝑖𝑗 𝜀𝑖𝑗
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hydrostatic strain. The dot product of the deviatoric tensor gives the strain energy density,
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Where is von Mises stress,  is the stress deviator,  defines the ellipcity 
𝜎𝑒 = (3

2
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of the yield surface, which is defined by an equation of plastic Poisson’s ratio 

, the plastic Poisson’s ratio  , with ,  are the transverse 
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and loading directional component of the plastic strain tensor respectively under uniaxial 

compression. Note that when  (which was found to be the case based the uniaxial 𝑣𝑝 ≈ 0

compression experiment [19]), , which is significantly higher than the case of 𝜂 = 4.5

incompressible von Mises plasticity where .𝜂 = 0

At uniaxially stressed state, the total elastic strain energy density is then , where  
𝑤𝑒 =

�̅�2

2𝐸 �̅�

is the uniaxial stress. If we assume the critical value for the elastic strain energy density 

remains the same for different stress-states, then the uniaxial yield stress can be expressed 

as,

  (S7)
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This gives us the yield function for multi-axial loading in the form of
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Where  is tangent hardening modulus which can be obtained from uniaxial stress 
𝐻𝑝 =

𝑑�̅�
𝑑�̅�𝑝

versus the plastic strain relationship.

Note 4: Characteristics of PUA Nanostructures

Table 1 summarizes material characterization data pertinent to this work. Bulk densities ( ) 𝜌𝑏

increased from 0.123 g cm-3 to 0.244 g cm-4 for PUA-11 to PUA-24. Skeletal densities ( ) 𝜌𝑠

remained constant, as expected from open porosity, , which, therefore, decreased in reverse order Π

to . The skeletal framework consists of interconnected fibres, which at higher magnification 𝜌𝑏

appear as strings of fused beads in all three types of samples. By SANS, all three skeletal 

frameworks consist of about same-size primary particles (7 nm in radius) with fuzzy interfaces 

(high-Q slope>4.00 – Q: scattering vector). From the SANS results, the primary particles formed 

closely-packed secondary particles (within a low-Q slope of 3.0). The radius of the secondary 

particles ranged from 17 to 24 nm, which is in good agreement with the average size of the beads 

(about 40 nm in diameter) as observed from SEM. From these SEM images, all PUA share similar 

geometrical features in terms of randomness in cell shapes and size as shown in Fig.2. Each 

ligament of the network structure has a slenderness ratio (length over radius) above 10. Together 

with the interconnected structures, a bending dominant deformation mechanism is expected under 

compression.

The post-indentation sites as illustrated in Fig. S4a were scanned using atomic force microscopy 

(AFM). No significant pile-ups were observed from both SEM and AFM images. The distinctive 

ridges following the shape of the Berkovich tip also indicate strong plastic behaviors as indicated 

from force-displacement responses. Fig. S4a-c showed the typical deformed profiles after 

indentations of PUA-11, 16, and 24. The linearly fitted lines (dashed lines in Fig. S4d) 



describe the anticipated indentation profiles following the Berkovich tip geometry. 

Comparing to the experimental results (symbols), the actual deformed profiles are deeper. This 

indicates an absence of the pile-up behavior usually caused by confinement of adjacent materials. 
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Fig. S4 AFM scan of deformation profiles: (a) PUA-11, (b) 16, (c) 24, arrows show cross-

section location, (e) cross-sectional profile along the arrows

Note 5: Finite Element Modeling Details

A three-dimensional half-structure model of indentation was generated as shown in Fig. 

S5a. A friction-free contact was assumed between the indenter and PUA. The radius of the 

tip is set at 100 nm. The element size is controlled at 25 nm at the contact area and gradually 

increased as moving away from the contact area as shown in Fig. S5b-d. 

From the equivalent plastic strain contours of PUA-11, 16, and 24, concentrations are 

shown under the tip with high value of 0.8-0.9. This means the remaining porosity is very 

low since most of the ligaments are collapsed, forming particle contacts, penetrations or 

fusing. Sharp transition is also found between the plastic and elastic zone. This 

demonstrates the localized compressive behavior due to the missing lateral confinement.



Fig. S5 Finite element modelling: (a) half-structure model, (b-d) plastic strain contours near 

contact for PUA-11, 16, and 24.


