Supporting Information

A photo-degradable injectable self-healing hydrogel based on star poly(ethylene glycol)-*b*-polypeptide as potential

pharmaceuticals delivery carrier

Dinglei Zhao, a Quan Tang, Qiang Zhou, Kang Peng, Haiyang Yang*, and Xingyuan Zhang*a

^{a.} CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China.

Figure S1: a) ¹³C NMR of γ -*o*-nitrobenzyl-*L*-Glutamate in D₂O with a drop of DCl. b) ¹³C NMR of *N*-(*p*-nitrophenoxycarbonyl)- γ -*o*-nitrobenzyl-*L*-Glutamate in DMSO-D₆.

Figure S2: The FT-IR of N-(*p*-nitrophenoxycarbonyl)-*γ*-*o*-nitrobenzyl-*L*-Glutamate.

Figure S3: The MS of N-(*p*-nitrophenoxycarbonyl)-*y*-*o*-nitrobenzyl-*L*-Glutamate.

Figure S4: The ¹H NMR of amphiphilic diblock polymers in CDCl₃. a) t-P₅₆-b-NG₇, b) t-P₅₆-b-NG₁₀, c) t-P₅₆-b-NG₁₂, d) t-P₅₆-b-NG₁₅.

Figure S5: The GPC traces recorded for amphiphilic diblock copolymers by DMF elution.

Figure S6: Frequency-sweep measurements of hydrogel Storage modulus, G' / Pa, and loss modulus, G" / Pa, for hydrogels of different compositions a) t-P₅₆-b-NG₅; b) t-P₅₆-b-NG₇; c) t-P₅₆-b-NG₁₀; d) t-P₅₆-b-NG₁₂; e) t-P₅₆-b-NG₁₅ and concentrations(10 wt%, 20 wt%, 30wt%).

Scheme S1: The synthesis and polymerization route of *N*-(*p*-nitrophenoxycarbonyl)*y*-benzyl-*L*-Glutamate.

Figure S7: a) The ¹H NMR of *N*-(*p*-nitrophenoxycarbonyl)-*y*-benzyl-*L*-glutamate in CDCl₃, b) The ¹³C NMR of *N*-(*p*-nitrophenoxycarbonyl)-*y*-benzyl-*L*-glutamate in CDCl₃, c) The ¹H NMR of amphiphilic diblock polymer(t-P₅₆-b-BG₅) in CDCl₃. d) The GPC trace recorded for amphiphilic diblock copolymer by DMF elution.

Figure S8: a) UV-vis absorbance spectra of different concentrations Dox(25 mg/L, 50 mg/L, 75 mg/L, 100 mg/L) in PBS buffer (pH=7.4, 100 mM). b) The absorbance intensity at 482 nm recorded for different Dox concentrations.

Figure S9: a) Cytotoxicity of various concentration leaving group nitrobenzyl alcohol without or with 30 min UV irradiation against HeLa cells. b) Cytotoxicity of various concentration PEG-polypeptide conjugates against HeLa cells. The data are expressed as mean \pm sd (n = 6). *P < 0.05 (*t*-test).

Figure S10: Effect of reaction conditions on HeLa cells viability-FDA studies. a) control, b) micelles solution of t-P₅₆-b-NG₅ at a concentration of 3.0 mg/mL without irradiation and c) with UV irradiation, d) Dox-loaded micelles solution of t-P₅₆-b-NG₅ at a concentration of 3.0 mg/mL without irradiation and e) with UV irradiation 30 min were added to cell culture medium and further incubated for 24h. Cell were stained with FDA(Fluorescein diacetate) and observed under a fluorescent microscope.

Microcapsules were stained with FDA and observed under a fluorescent microscope.

Microcapsules were stained with FDA and observed under a fluorescent microscope. Microcapsules were stained with FDA and observed under a fluorescent microscope.

Microcapsules were stained with FDA and observed under a fluorescent microscope. Microcapsules were stained with FDA and observed under a fluorescent microscope.