Electronic Supplementary Information (ESI)

Photo/thermoresponsive ABC triblock copolymer-based ion gels:

Photoinduced structural transitions

Ryota Tamate, Ryoji Usui, Kei Hashimoto, Yuzo Kitazawa, Hisashi Kokubo and Masayoshi Watanabe*

Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.

*To whom correspondence should be addressed. E-mail: mwatanab@ynu.ac.jp. Phone/Fax: +81-45-339-3955

Calculation procedure of the theoretical elasticity G for ABA and ABC ion gels

The theoretical elasticity, G, from classical rubber elasticity theory is expressed as

$$G = nk_{\rm B}T = \rho RT/M_{\rm x} \tag{1}$$

where *n* is the number density of network strands, ρ the mass density of the strand, M_x the molecular weight between crosslinks, *T* the absolute temperature, k_B the Boltzmann constant, and *R* the gas constant. Here, M_x corresponds to the molecular weight of the B middle block (present ABC: 67 kg/mol, previous ABA^{S1}: 33 kg/mol). The mass density of the strand could be calculated as

$$\rho = c \rho_{\text{gel}WB} \tag{2}$$

where *c* is the polymer concentration (w/w) (ABC: 0.15, ABA: 0.20), ρ_{gel} the mass density of the ion gel (ABC: 1.52 g cm⁻³, ABA: 1.37 g cm⁻³), *w*_B the weight ratio of the B middle block in the triblock copolymer (ABC: 0.68; ABA^{S1}: 0.52). Here, we hypothesize that the mass densities of the ion gels are equal to those of the IL solvents ([C₂mim][NTf₂] for ABC, [C₄mim]PF₆ for ABA). The mass densities of the strand (ρ) for ABC and ABA ion gels were calculated by substituting these values into Eq. (2) (ABC: 155 kg m⁻³, ABA: 144 kg m⁻³). Finally, by using these values, theoretical elasticity *G* can be calculated at 25 °C (*T* = 298.15 K) from Eq. (1) (ABC: 5.71 kPa, ABA: 10.8 kPa).

Fig. S1 ¹H-NMR spectra of (a) PS-CTA, (b) PS-*b*-PDMAm-CTA (AB-CTA), and (c) PS-*b*-PDMAm-*b*-P(AzoBnAm-*r*-NIPAm) (ABC(Azo)) in CDCl₃.

Fig. S2 DSC curves of bulk PS homopolymer and PS homopolymer soaked in [C₂mim][NTf₂] at heating rate 10 °C min⁻¹. Nearly identical glass transition temperatures (T_g) indicate that the T_g of PS is not affected by the presence of IL, which is consistent with our previous result.^{S2}

Fig. S3 (a) Temperature dependence of optical transmittance at 500 nm for 3 wt% P(AzoBnAm*r*-NIPAm) random copolymer in [C₂mim][NTf₂] in the dark (*trans*-form) and under UV light irradiation (*cis*-form). [AzoBnAm]/[NIPAm] = 17/83. (b) Effect of the AzoBnAm composition in P(AzoBnAm-*r*-NIPAm) on UCST type phase transition temperatures for 3 wt% P(AzoBnAm-*r*-NIPAm) solutions in [C₂mim][NTf₂].

Fig. S4 Variations in *G'* and *G''* values for 20 wt% ABA triblock copolymer P(AzoMA-*r*-NIPAm)*b*-PEO-*b*-P(AzoMA-*r*-NIPAm) in [C₂mim][NTf₂] under UV and visible light irradiations as functions of temperature at frequency $\omega = 0.1$ rad s⁻¹, strain amplitude $\gamma = 1$ %, and cooling rate 0.2 °C min⁻¹.

Fig. S5 (a, b) Appearances of 15 wt% ABC(Azo) ion gel after strain sweep measurements under visible light (a) and UV light (b).

Fig. S6 Temperature dependence of optical transmittance for 3 wt% P(AzoBnAm-*r*-NIPAm) random copolymer ([AzoBnAm]/[NIPAm] = 11:89) in (a) [C₂mim][NTf₂], (b) 1-methyl-3-propylimidazolium ([C₃mim]) [NTf₂], (c) 1-butyl-2,3-dimethylimidazolium ([C₄dmim]) [NTf₂], and (d) 1-methyl-3-pentylimidazolium ([C₅mim]) PF₆ under UV light irradiation (*cis*-form) and in the dark (*trans*-form).

Table S1 Cloud points (T_{cs}) for 3 wt% P(AzoBnAm-r-NIPAm) random copolymer([AzoBnAm]/[NIPAm] = 11:89) in several imidazolium-based ILs under UV light irradiation orin the dark.

IL	$T_{\rm c}(trans)$ / °C	$T_{\rm c}(cis)$ / °C	$\Delta T_{\rm c}$ / °C
$[C_2 mim][NTf_2]$	53	42	11
[C ₃ mim][NTf ₂]	28	24	4
[C ₄ dmim][NTf ₂]	58	55	3
[C ₅ mim]PF ₆	77	69	8

Supporting References

- S1 T. Ueki, R. Usui, Y. Kitazawa, T. P. Lodge and M. Watanabe, *Macromolecules*, 2015, 48, 5928–5933.
- S2 S. Imaizumi, H. Kokubo and M. Watanabe, *Macromolecules*, 2012, **45**, 401–409.