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BENDING

In Fig. 4 of the main text, we omit linear and sub-
linear dependences on the polar angle, θ, for clarity.
As a result, the bending energies for different po-
lar angles (blue, gray, and orange dashed lines) are
shown to lie atop each other. Here we note that we
expect some dependence of the bending energy den-
sity Eb on polar angle, though this should appear
as a subleading, quadratic correction to the bend-
ing energy on the apex of a PS sphere. The leading
behavior is therefore Eb ∼ (B/D) δr sin θ, where B
is the bending modulus of the sheet and D is the
diameter of the sphere.

The two-dimensional bending energy density of a
thin plate in plane stress is [1]
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where ζ(x, y) is the out-of-plane displacement of the
plate and B is the bending modulus. Taylor expand-
ing around θ = 0, the energy density evaluates to
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Thus, we expect the bending energy of a membrane
to increase with polar angle. This analysis neglects
the presence of neighboring spheres, which would
further affect the θ dependence, particularly at large
θ, where the small deflection assumption and the
validity of Eqn. S2 breaks down.

STRETCHING

Definitions of stretching energy, strain, and
stress

Assuming locally in-plane displacements u(r, φ) =

ur(r, φ)r̂ + uφ(r, φ)φ̂, we have strains [1]

εrr = ∂rur (S3)
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When the out-of-plane displacements are included,
the expressions for strain become
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These strains are related to the stress via

σrr =
Y
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where Y = Et is the stiffness.
The stretching energy density, Es = 1

2σijεij , takes
the plane stress form
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FIG. S1. Stretching energy in a spring network
draped on a lattice of spheres with strong pin-
ning. The energy density in a pinned sheet draped to a
lattice of spheres grows as θ4. Only at moderately large
polar angles (θ & 25◦) does the stretching energy in a
sheet conforming to a triangular lattice of spheres (blue
circles) diverge from the case of a single sphere (orange
diamonds). The quartic scaling with polar angle is exact
in the absence of neighboring substrate spheres (orange
diamonds). Both spring networks were 100 a × 100 a in
extent, and the substrate sphere diameters were 40 a and
60 a for the lattice and single sphere cases, respectively.

Since εrφ = 0 by symmetry on the sphere,
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Sequential pinning gives Es ∼ Y θ4

Fig. S1 shows the stretching energy of an elastic
spring network as a function of polar angle on the
sphere. We find the stretching energy density grows
as Es ∼ Y θ4 for modest polar angle. Additionally,
each component of the stress exhibits σ ∼ Y θ2 scal-
ing, particularly when only a single sphere is present
as the substrate, as shown in Fig. S2. The presence
of neighboring spheres in the substrate causes de-
viation from the power-law scaling in both energy
density and stress for sufficiently large polar angles
(θ & 25◦). The quadratic scaling of the strain, ε,
can likewise be seen in Fig. 6 of the main text.

The geometric frustration of the sheet on the
spherical cap is the source of elastic energy in an
annulus of the sheet that has not yet conformed to
the sphere. In particular, let us consider the por-
tion of the sheet near θa which is just about to ad-
here to the sphere, and is therefore about to become

FIG. S2. In-plane stresses in a spring network
draped on a lattice of spheres with strong pin-
ning. The stress density in a pinned sheet draped to a
lattice of spheres grows as θ2. Only at moderately large
polar angles (θ & 25◦) does the stretching energy in a
sheet conforming to a triangular lattice of spheres (blue
circles) diverge from the case of a single sphere (orange
diamonds). The quadratic scaling with polar angle is ex-
act in the absence of neighboring substrate spheres (gray
and orange diamonds for σrr and σφφ, respectively.) The
lattice dimensions are the same as in Fig. S1.

pinned in its current state of strain. The strain
at θa scales linearly with the integrated Gaussian

curvature of the spherical cap: ε ∼
∫ Rθa
0

Gr dr ∼∫ Rθa
0

(1/R2) r dr ∼ R0θ2a, where R = D/2 is the ra-
dius of the sphere [2, 3]. This portion of the sheet is
then frozen into a strain configuration that depends
quadratically on the polar angle at which it con-
forms. As a result, after many annuli have adhered,
each corresponding to a ever-larger θa, we expect ε ∼
θ2. Linear elasticity dictates that the stress scales
similarly as well — σ ∼ Y ε ∼ Y θ2, where Y is the
stiffness — and thus the stretching energy density
Es = 1

2σε ∼ Y θ4. This means that the stretching
energy stored in an annulus is Es ∼ Y D δr θ4 sin θ,
which for small θ gives Es ∼ Y D δr θ5. Sequen-
tial pinning of the nanoparticle sheet ensures that
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this is true irrespective of the maximum angle sub-
tended by the sheet: the state of strain is frozen into
the adhered portion, unable to respond elastically to
additional pileup of strain at θ > θa.

Case without pinning has different Es scaling

This analysis contrasts with the expectation for an
equilibrated elastic sheet without pinning. Without
pinning, the energy density rearranges in such a way
as to be non-monotonic in the polar angle θ on the
sphere, with some sensitivity to the boundary condi-
tions. The stress is greatest on the apex of a sphere
without pinning, in stark contrast to the case with
sequential pinning, for which the stress vanishes at
the cap. This difference highlights the distinct char-
acter of sequential adhesion to a substrate seen in
our system.

Without pinning, we can solve for the strain en-
ergy by finding the stress and strain via

1

Y
∇4χ(r) = −G = − 1

R2
, (S14)

where χ is the Airy stress function given by σij =
εilεjk∂l∂kχ and where, as before, R = D/2 is the
radius of the sphere. Solving Eqn. S14 for the energy
density in a circular sheet of radius W equilibrated
to a spherical cap results in
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where r is the radial coordinate of the polar coordi-
nate system on the apex of the sphere, and the apex
is assumed to coincide with the center of the circular
sheet. Here, T = σrr(r = W ) is the radial stress at
the boundary. If we set T = 0 for the moment to
look only at the effects of curvature, for small polar
angles θ ≈ r

√
G, the energy density decreases with

polar angle in a quadratic correction:
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If we set W = Rθmax = Dθmax/2, with θmax fixed,
the leading term shows that Es ∼ Y D0θ0. This be-
havior contrasts with the case with pinning studied
elsewhere in this article. We note, however, that the

FIG. S3. Adhesion enables an in-plane stress im-
balance to the elastic membrane. Through adhe-
sion to the substrate, there is a residual force imbalance
in the stretching of a simulated triangular spring net-
work. The quadratic scaling with polar angle is exact
in the absence of neighboring substrate spheres (orange
diamonds). Both spring networks were 100 a × 100 a in
extent, and the substrate sphere diameters were 40 a and
60 a for the lattice and single sphere cases, respectively.

total stretching energy in the entirety of a spherical
cap conformed to a sphere, with or without pinning,
has the same scaling: Etot

s ∼ Y D2θ6max, where θmax

is the maximum angle at the edge of the sheet.

Influence of adhesion

Fig. S3 shows that for modest polar angles, the
in-plane stress imbalance

I ≡ ∂r (rσrr)− σφφ (S17)

grows quadratically in simulations of spring net-
works draping to spheres. Without adhesion,
this quantity would vanish in equilibrium. We
checked that the residual force imbalance is scale-
independent for sufficiently large substrate sphere
sizes (D/a & 10).

Case without pinning does not agree with
experiment

If adhesion is not included, then the resulting
strain field contrasts with the results from simula-
tions, as shown in Fig. S4. The strain fields in this
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FIG. S4. Strong pinning to the substrate is neces-
sary for qualitative agreement with experiments.
The analytic solution in the case with no adhesion, given
by the green curve, differs qualitatively from the simula-
tion (blue curve) and experimental results (transparent
orange and purple data).

case are
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where W is the width of the sheet from the cap
to the periphery. We assume the radial stress van-
ishes at the boundary for simplicity (T = 0), but
we note that changing T simply adds a constant to
each strain component. In Fig. S4, W was taken to
be the radius of the sphere, D/2, times 40◦ — ap-

FIG. S5. Finite size effects in the energetics of
draped spring networks. Spring networks with lattice
spacing a were draped over seven spheres in a triangular
closed packed arrangement, as in Fig. 1 of the main text.
The resulting strains depend only weakly on the ratio
of sphere size to lattice spacing, D/a, so that the data
coincide for all but the smallest values of D/a. While
the shear and azimuthal strains are nearly unaffected by
the size of the lattice, the radial strain begins to diverge
significantly around D/a ∼ 10.

proximately where cracks appear in Fig. 2c of the
main text. The qualitative differences in elastic re-
sponse shown in Fig. S4 highlight the importance
of adhesion in determining the mechanical response
and monolayer morphology.

Finite size effects in draped spring networks

We investigated the effects of finite size in the sim-
ulations of spring networks with respect to the sub-
strate sphere size. Spring networks with lattice spac-
ing a are draped over seven spheres in a triangular
closed packed arrangement, as in Fig. 1 of the main
text. The resulting strains depend weakly on the ra-
tio of sphere size to lattice spacing, D/a. While the
shear and azimuthal strains are nearly unaffected by
the size of the lattice down to values of D/a ∼ 6, the
radial strain begins to diverge significantly around
D/a ∼ 10. This is reminiscent of previous work on
nanoparticle membranes [4], where the influence of
the discrete lattice becomes significant for systems
with a characteristic size of ∼ 10 a.

Sensitivity to conformation geometry

In simulations reported so far, we have used a
sheet geometry in which each nanoparticle lies ei-
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FIG. S6. Introducing a model indentation that
penetrates the interstices of the lattice of sub-
strate spheres changes the resulting nanopar-
ticle sheet strain fields only slightly. (a) The
spring network relaxes on a corrugated surface, which
is lowered onto a lattice of seven spheres. The white
dashed curves mark the z = 0 point, which is identi-
fied with the maximum height of the corrugated sur-
face, V (x), in the absence of substrate spheres. The
spheres then protrude from this surface as the simula-
tion evolves, and the spring network relaxes on a surface
z = max {V (x), zspheres}. Here the corrugation has a
maximum depth of ∆ = 0.2R, where R is the radius
of each substrate sphere. (b) Changing the indentation
depth results in only modest changes in the strain config-
uration of the pinned sheet at the end of the simulation.
Each value of maximum indentation depth, ∆, corre-
sponds to each shade of blue (εrr), orange (εrφ), and
green (εφφ) curves. As ∆ (here normalized by the sub-
strate sphere radius R) increases from simulation to sim-
ulation, the qualitative behavior of the strains remains
relatively unchanged.

ther in an xy plane at a decreasing z position or
on a sphere, whichever has a greater value of z
coordinate. However, we do not expect that the
nanoparticle sheet will be truly flat in the inter-
stices of the PS spheres in our experiments. For
the simulations presented earlier, the sheet is equi-
librated in each timestep on a surface defined by
z = max{zplane, zspheres}— that is, each node of the
network may reside on either a substrate sphere or

in a plane which is lowered incrementally at each
time step. At the end of each time step, nodes that
reside on a substrate sphere are pinned to that loca-
tion permanently.

Fig. S6 shows that introducing a model inden-
tation between substrate spheres elevates the ob-
served strains of the final, pinned nanoparticle sheet.
In Fig. S6b, each set of curves for εrr, εrφ, and
εφφ corresponds to a new simulation in which the
spring network is iteratively stamped onto a lattice
of spheres while conformed not to a plane, but to
a corrugated surface with indentations penetrating
the interstices of the substrate spheres (Fig. S6b).
The networks are relaxed on a surface defined by
z = max {V (x), zspheres}, where

V (x) = ∆
(

cos(b1 · x) + cos(b2 · x)

+ cos [(b1 + b2) · x]
)
, (S20)

where b1 and b2 are the reciprocal lattice vectors
of the honeycomb lattice defined by the position of
the interstices. This corrugated surface changes the
angle of contact between the spring lattice and the
substrate spheres and acts as a source of strain in
the interstices. While the qualitative strain behav-
ior of the resulting pinned spring lattices remains
largely unaltered, the radial and azimuthal strains
grow with indentation depth, ∆. Future work could
implement a more realistic boundary condition for
downward pressure on the sheet, as V (x) is a highly
simplified surface.

OTHER POSSIBLE SCALING DIAGRAMS

In section 3 (entitled ‘Energy Scaling’) and Fig. 4
of the main text, we presented a competition of en-
ergy scales that captures the observed behavior of
our nanoparticle sheets. Here we note that, in a dif-
ferent material, the energetic cost of plastic defor-
mation, captured via the phenomenological factor
Γ, could be much larger than the adhesion energy,
γ, then the plastic deformation regime might be ab-
sent, since no crossover between Eγ and Ed would
occur. This situation is illustrated in Fig. S7.
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FIG. S7. A nanoparticle sheet’s material prop-
erties could be altered such that Ed > Eγ for all
sphere sizes D. For this ordering of competing energy
scales, there is only a transition from incomplete adhe-
sion at small sphere sizes to folding at large sphere sizes.
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