S1. Theoretical calculation for the scattering length density (SLD) of a molecule. Theoretically, the SLD of a molecule is computable via its molecular structure and mass density. Thus, $b_{\text{graft}} = 1.234$, 1.307 and 1.342 (× 10¹⁰ cm⁻²) for each AEM are estimated as listed in Table 2.⁵² The exact mass density of either ETFE crystalline or amorphous chain is unknown; however, plenty of previous reports showed that the scattering intensity of the neat ETFE base films is very weak, suggesting a negligible small difference in the SLD of ETFE crystalline and amorphous domains.^{14, 16, 50} Therefore, it is reasonable to use the average mass density of ETFE film of 1.7 g/cm³ to roughly estimate the SLD of ETFE crystalline and amorphous domains to be 2.7 × 10¹⁰ cm⁻² as listed in Table 2. b_w is a function of f_{D20} given by

$$b_w = b_{D20} f_{D20} + b_{H20} (1 - f_{D20}) \tag{S1}$$

where b_{D2O} and b_{H2O} are the SLD of D₂O and H₂O being 6.34 and -0.56 (× 10¹⁰ cm⁻²), respectively.⁵²

S2. Hard-Sphere fluid model analysis. For the identical spheres, P(q) is expressed as a functions of an average radius (R_s) and the standard deviation of R_s (σ_R) as below.

$$P(q) = v^{2} \{ \frac{3\left[\sin(qR_{s}) - qR_{s}\cos(qR_{s})\right]}{(qR_{s})^{3}} \}^{2}$$
(S2)

with v being the volume of the sphere as $v = (4\pi R_s^3)/3$. For spheres with a size distribution, Gaussian distribution function is applied to modify P(q) as⁵²

$$P(q) = \int_{0}^{\infty} v^{2} \left\{ \frac{3}{(qr)^{3}} [\sin(qr) - qr\cos(qr)] \right\}^{2} \times \frac{1}{(2\pi)^{1/2} \sigma_{R}} exp^{\frac{1}{(2\pi)^{1/2}}} \left[\frac{-(r-R_{s})^{2}}{2\sigma_{R}^{2}} \right] dr$$
(S3)

where σ_R is the standard deviation of R_s .

Given that Percus–Yevick approximation accounts for the inter-particle interference, S(q) is expressed as a function of the volume fraction of spheres (ϕ_s) and R_s .⁵³⁻⁵⁵

$$S(q) = \frac{1}{1 + 24\phi_s(\frac{F(A)}{A})}$$
(S4)

where $A = 2qR_s$, ϕ_s is the volume fraction of spheres in the conducting domains, and F(A) is a trigonometric function of A by

(S5)
$$F(A) = \frac{\alpha}{A^{2}}(sinA - AcosA) + \frac{\beta}{A^{3}}(2AsinA + (2 - A^{2})cosA - 2) + \frac{\gamma}{A^{5}}(-A^{4}cosA) + \frac{\beta}{A^{3}}(2AsinA + (2 - A^{2})cosA - 2) + \frac{\gamma}{A^{5}}(-A^{4}cosA) + \frac{\beta}{A^{3}}(2AsinA + (2 - A^{2})cosA - 2) + \frac{\gamma}{A^{5}}(-A^{4}cosA) + \frac{\beta}{A^{3}}(2AsinA + (2 - A^{2})cosA - 2) + \frac{\gamma}{A^{5}}(-A^{4}cosA) + \frac{\beta}{A^{3}}(2AsinA + (2 - A^{2})cosA - 2) + \frac{\gamma}{A^{5}}(-A^{4}cosA) + \frac{\beta}{A^{3}}(2AsinA + (2 - A^{2})cosA - 2) + \frac{\gamma}{A^{5}}(-A^{4}cosA) + \frac{\beta}{A^{3}}(2AsinA + (2 - A^{2})cosA - 2) + \frac{\gamma}{A^{5}}(-A^{4}cosA) + \frac{\beta}{A^{3}}(2AsinA + (2 - A^{2})cosA - 2) + \frac{\gamma}{A^{5}}(-A^{4}cosA) + \frac{\beta}{A^{3}}(2AsinA + (2 - A^{2})cosA - 2) + \frac{\gamma}{A^{5}}(-A^{4}cosA) + \frac{\beta}{A^{3}}(2AsinA + (2 - A^{2})cosA - 2) + \frac{\gamma}{A^{5}}(-A^{4}cosA) + \frac{\beta}{A^{3}}(2AsinA + (2 - A^{2})cosA - 2) + \frac{\gamma}{A^{5}}(-A^{4}cosA) + \frac{\beta}{A^{3}}(2AsinA + (2 - A^{2})cosA - 2) + \frac{\gamma}{A^{5}}(-A^{4}cosA) + \frac{\beta}{A^{5}}(-A^{4}cosA) + \frac{\beta}{A^{5}}(-A^{5}cosA) + \frac{\beta}{A^{5}}(-A^{5}co$$

where

$$\alpha = (1 + 2\phi_s)^2 / (1 - \phi_s)^4$$

$$\beta = -6\phi_s \left(1 + \frac{\phi_s}{2}\right)^2 / (1 - \phi_s)^4$$

$$\gamma = \frac{1}{2\phi_s} (1 + 2\phi_s)^2 / (1 - \phi_s)^4$$
(S6)

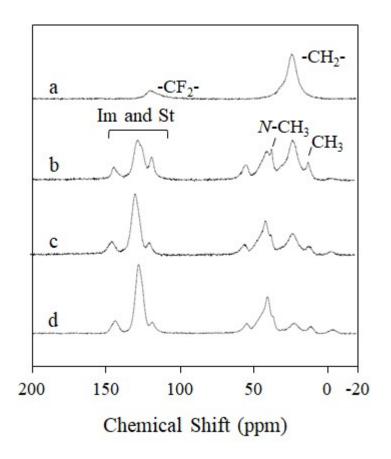


Figure S1 13 C solid-state NMR spectra of (a) a ETFE base film, and (b) Im₆St₄-, (c) Im₄St₆-, (d) Im₃St₇- AEMs in the Cl⁻ form.

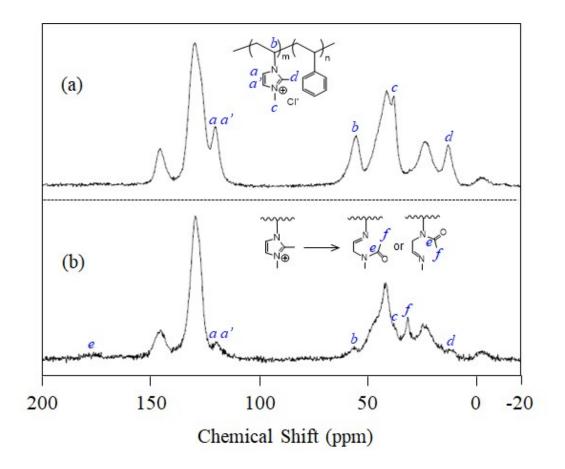


Figure S2 ${}^{13}C$ solid-state NMR spectra of $Im_6St_4^{ref14}$ in the Cl⁻ form (a) before, and (b) after immersion in 1 M KOH solution at 80 °C for 740 h.

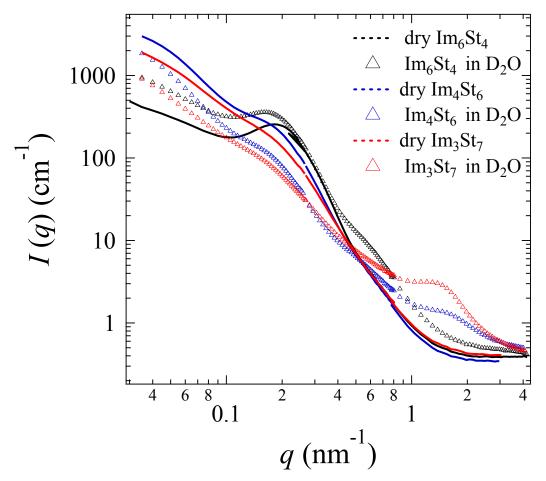


Figure S3 SANS intensity profiles of Im₆St₄-, Im₄St₆- and Im₃St₇-AEMs in the dry state and equilibrated in D₂O before incoherent scattering correction.



Figure S4 Normalization of I(q) profiles at around the first-order lamellar peaks in Region I for (a) Im₆St₄-, (b) Im₄St₆- and (c) Im₃St₇-AEMs, respectively.

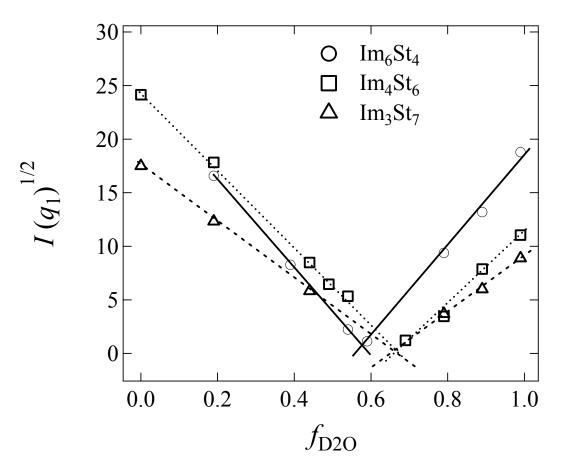


Figure S5 The volume fraction f_{D2O} dependence of $I(q_1)^{1/2}$ observed for AEMs swollen in water mixtures shown in Figure 4.

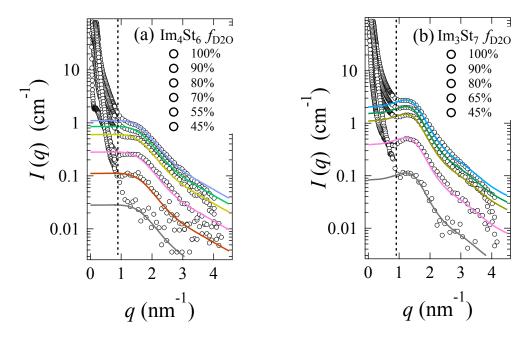


Figure S6 $I(0)_{exp}$ can be estimated by experimentally extrapolating the best-fitted lines to $q \sim 0$ for all contrasts SANS profiles (symbols) obtained from (a) Im₄St₆-AEM and (b) Im₃St₇-AEM, respectively.

Table S1	WU and SR for AEMs in OH ⁻ form at 25 °C

AEMs in OH ⁻ form	Im/St	GD (%)	WU (%)	SR (%)
Im ₆ St ₄	62/38	30	46	55
Im ₄ St ₆	42/58	53	55	71
Im ₃ St ₇	26/74	110	79	78

Table S2Parameters used to fit SANS profiles of Im_4St_6 and Im_3St_7 membranes
equilibrated in water mixtures by eq. (11)

$f_{\rm D2O}$	Im ₄ St ₆				Im ₃ St ₇			
(%)	ϕ_{s}	R_s (nm	n) σ_R/R_s	Κ	ϕ_s	R_{s} (nm)	σ_R/R_s	Κ
0				0.63				2.1
20				0.06				0.51
45				0.06				0.38
50				0.16				-
55	0.12	1.6	0.28	0.55	0.195	2.0	0.26	-
65				-				1.79
70				0.59				-
80				1.16				5.06
90				1.58				7.03
100				2.1				9.4