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Formulation for the bending of compressible electret

In this supplementary, we relax the incompressible constraint for an electret with surface charge
density ρ̃e = qδ(X −Xch) and update relations given in section 4 in the paper. The objective is to
assess the effect of the incompressibility assumption on our final results.

In contrast to the deformation of incompressible block given in eqn (36), the deformation of
compressible block is expressed as [1, 2]

r = r(X), θ = θ0
Y

L
, z = Z, (S.1)

where θ0 is an unknown constant. r(X) and θ0 will to be determined by solving the boundary-value
problem. The deformation gradient tensor F = dx/dX is given as

F =
dr

dX
er ⊗ eX +

rθ0
L

eθ ⊗ eY + ez ⊗ eZ . (S.2)

We use the compressible neo-Hookean material and the corresponding strain energy function is

W elast =
µ

2

(
J−2/3 tr(FTF) − 3

)
+
k

2
(J − 1)2, (S.3)

where k is the bulk modulus of the material. Substituting eqn (S.3) and (S.2) into eqn (9) in the
paper, the first Piola stress Σ̃ is obtained as

Σ̃ =
∂ψ

∂F
= ΣrXer ⊗ eX + ΣθY eθ ⊗ eY + ΣzZez ⊗ eZ . (S.4)

Furthermore, eqn (S.2) and eqn (8a) and (4) are used to express nominal electric displacement
as

D̃ = DXeX = −εrθ0
L

(
dr

dX

)−1 dξ

dX
eX . (S.5)

The Piola-Maxwell stress is derived substituting eqn (S.5) into eqn (10) in the paper:

Σ̃MW = ΣMW
rX er ⊗ eX + ΣMW

θY eθ ⊗ eY + ΣMW
zZ ez ⊗ eZ . (S.6)

1

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2018



The equilibrium equations in the reference configuration are expressed as

d

dX

(
ΣrX + ΣMW

rX

)
− θ0
L

(
ΣθY + ΣMW

θY

)
= 0, (S.7a)

dDX

dX
= qδ(X −Xch). (S.7b)

Boundary conditions are similar to boundary conditions used in the incompressible case:

ΣrX + ΣMW
rX = 0 at X = H and X = −H, (S.8a)

ξ(X = −H) = ξ(X = H) = 0, (S.8b)∫ H

−H
r
(
ΣθY + ΣMW

θY

)
dX = M. (S.8c)

We solve the above system of ordinary differential equations numerically and definition (71) is
used to calculate flexoelectric coefficient. Here, we have considered numerical values of µ = 1 MPa,
ε = 2.35ε0, H = 30 µm, Xch = 0 and q = 10−3 C/m2 and present results for different values of
Poisson’s ratio which was shown in Figs. (I,II and III).

Figure I shows the effect of compressibility on the apparent flexoelectric coefficient. Apparent
flexoelectric coefficient versus average dimensionless curvature has been plotted in this figure. For
all levels of compressibility, there is no qualitative change in the results compare to incompressible
case (except at very high curvatures). Our results remain of the same order e.g. approximate
reduction of 30% is observed in the value of flexoelectric coefficient when Poisson’s ratio decreases
from 0.5 to 0.25 in Fig. I. We remark that a Poisson ratio of 0.25 represents an unusually high
compressibility for a soft material.

Figure I: Effect of compressibility on the flexoelectric coefficient of electret.

Qualitative agreements of the compressible and incompressible cases can also be found in Figs.
II and III. Bending moment versus dimensionless curvature has been plotted in Figure II for
materials with different values of Poisson’s ratio. It is clear that all materials show the same
qualitative behavior.
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Figure II: Bending moment versus curvature for blocks for different Poisson’s ratio.

Figure III: Change of the electric displacement with respect to the change of the curvature.
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