Propofol adsorption at the air/water interface: a combined vibrational sum frequency spectroscopy, nuclear magnetic resonance and neutron reflectometry study.

Petru Niga^{1*}, Petra M. Hansson-Mille¹, Agne Swerin^{1,2}, Per M. Claesson^{1,2}, Joachim Schoelkopf⁸, Patrick A. C. Gane^{3,4}, Jing Dai⁵, István Furó⁵, Richard A. Campbell^{6,7} and C. Magnus Johnson^{2*}

¹RISE Research Institutes of Sweden – Chemistry, Materials and Surfaces, Box 5607, SE-114 86 Stockholm, Sweden.

²KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE - 100 44 Stockholm, Sweden.

³Omya International AG, Baslerstrasse 42, CH-4665 Oftringen, Switzerland.

⁴Aalto University, School of Chemical Technology, Department of Bioproducts and Biosystems, FI-00076 Aalto, Helsinki, Finland.

⁵ KTH Royal Institute of Technology, Department of Chemistry, Division of Applied Physical Chemistry, SE - 100 44 Stockholm, Sweden.

⁶ Institut Laue-Langevin, 71 Avenue des Martyrs, CS20156, 38042 Grenoble Cedex 9,

France.

⁷ Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, UK.

Supporting Information

Fitting of the propofol spectrum at 0.89 mM concentration

Figure S1. VSF spectra for propofol at a concentration of 0.89 mM in SSP polarization including the fitting curve.

Concentration mM	Assignments	Peak position	Amplitude	Gamma				
SSP								
0.22	sCH ₃	2875	0.154	9				
	CH isoprop.	2910	0,114	14				
	aCH ₃	2965	-0.349	12				
	arCH	3035	-0.047	11				
	arCH	3071	0.010	11				
SSP								
0.28	sCH ₃	2875	0.162	9				
	CH isoprop.	2910	0,063	14				
	aCH ₃	2965	-0.410	12				
	arCH	3035	-0.002	11				
	arCH	3071	0.002	11				

Table S1. Fitting parameters for CH stretches of propofol at increasing concentrations

SSP							
0.39	sCH ₃	2875	0.207	9			
	CH isoprop.	2910	0,032	14			
	aCH ₃	2965	-0.484	12			
	arCH	3035	-0,018	13			
	arCH	3071	0,022	11			
SSP							
0.56	sCH ₃	2875	0.189	9			
	CH isoprop.	2910	0,176	14			
	aCH ₃	2965	-0.524	12			
	arCH	3035	-0.062	11			
	arCH	3071	0.070	11			
SSP							
	sCH ₃	2875	0,213	9			
	CH isoprop.	2910	0,152	14			
0.73	aCH ₃	2965	-0,526	12			
	arCH	3035	-0,038	11			
	arCH	3071	0,139	11			
SSP							
0.89	sCH ₃	2875	0,212	9			
	CH isoprop.	2910	0,128	14			
	aCH ₃	2965	-0,547	12			
	arCH	3035	-0.018	11			
	arCH	3071	0.162	11			

Details on the derivation of the area per molecule from the surface tension measurements.

The data of the surface tension isotherm was fitted using a second order polynomial function as shown below:

$$y = B1*x + B2*x^2 + C$$

where $x = \ln(c)$ and C is the intercept.

B1		B2		С		Statistics
Value	Standard	Value	Standard	Value	Standard	Adj. R-
	Error		Error		Error	Square
-21.071	1.023	5.529	0.921	72	0.226	0.998

We have used a common approach to place the interfacial plane so that the surface excess of water is zero and the surface excess of propofol as determined from surface tensiometry, Γ_{ST} , is calculated as follows:^{S11}

$$\frac{d\gamma}{d\mu} = -\Gamma_{ST}$$

where γ is the surface tension, and μ is the chemical potential of propofol, which can be expressed as

$$\mu = \mu^0 + RT lna \approx \mu^0 + RT lnc$$

where μ^0 is the chemical potential of pure water, and *a* is the activity and *c* the bulk concentration of propofol. Γ_{ST} was calculated based on Gibb's equation:

 $\Gamma_{ST} = -\frac{1}{RTdlnc} d\gamma$

where R is the gas constant, and T is the absolute temperature. To calculate the derivative, the second order polynomial that was fitted to the data was used. The values of the area per molecule, A, reported in main text were calculated from the following relation

$$A = 1/(\Gamma_{ST}N_A)$$

where N_A is Avogadro's number.

Reference

SI1. D. Fennell Evans, H. W. (1999). <u>The Colloidal Domain: Where Physics, Chemistry,</u> <u>Biology, and Technology Meet</u>.