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1. Comparison between neo-Hookean model and Yeoh model

The neo-Hookean material (NH) is a special case of the Yeoh’s model with .  For this case, the 2 3 0C C 
normalized nominal stress in a uniaxial test has no softening and hardening behavior (Figure S1) and will not fit the 
experimental data in Chopin et al.1 or Deplace et al.2  Nevertheless, we plot the lateral and shear stresses based on 
this model and compare with Kaelble’s prediction.  These results are plotted below.  This figure shows that our 
conclusion that the lateral stress  is much larger than the shear stress in the adhesive for a large shear strain 11 12

 is still valid. 

     

(a)                                                                                    (b)

Figure S1.  (a) Normalized nominal stress versus stretch for neo-Hookean and Yeoh materials, plotted as dashed and solid lines, 
respectively. (b) Normalized peel force  versus maximum normalized shear  and lateral normal stress  based on a F max

12 max
11

neo-Hookean material.  The linear theory of Kaelble is plotted in this same figure for comparison.  Note linear theory of Kaelble 
assumes .11 0 

2. Derivation of equation (16)

The key to solving (5) is to make  the independent variable and  the dependent variable, thus /  LTx l
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Using (S1), (5) becomes:
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where .  Next, let , then (S2) turns into a first order separable equation: ˆ / f      /d d  
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where the integration constant is determined by the condition  at .  Note that in our coordinate system, 0   

 is negative, so the integral in the RHS of (S3) is positive.  We expect , so we pick the positive square  / 0d d  

root in (S3). We integrate (S3) to give:
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where the integration constant is determined by the condition , where  is the as yet unknown   00    0

maximum shear strain at the origin.   The solution can be obtained using any smooth .  Here we consider the  f
special case where the material model is given by the three-term Yeoh’s model:
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For this case, (S4) can be evaluated exactly and is:
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To invert (16a), we note
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If we denote  and  , (S7) is:  4 2 232 2
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Squaring both sides of (S8), we have
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3. Calculation of peel force (17) 
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Equation (S8) does not depend on the specific form of the hyperelastic model, provided that the strain energy density 
function depends only on .  For the three-term Yeoh solid, the peel force is related to the maximum shear strain 1I
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4. Normalized peel force versus maximum shear strain with two different sets of parameters

We use two more sets of material parameters to find the dependence of the normalized peel force on the maximum 
shear strain: one set has a larger softening term , while the other has a larger hardening term  (the original 22C 32C

set in the main text of the paper is ).  As shown in Fig. S2 below, the qualitative behavior remains the  1 2 3, ,C C C
same – there is still a substantial difference between linear and nonlinear theory.



Figure S2.  Normalized peel force  versus maximum shear strain  at peel front. Nonlinear theory and linear theory F 0

(Kaelble) predictions, for various , are plotted as solid and dashed lines respectively.  Also, different sets of parameters with F
softer (dash-dotted line) or stiffer (dotted line) behaviors are also plotted for comparison.

5. Stresses along the adhesive/backing interface

The stress fields along the adhesive/backing interface are plotted in Fig S3.  As expected, these stresses are 
practically the same in region 2 and agree well with our analytic model.

                                                (a)                                                                                        (b)



                                                 (c)

Fig S3.  True stress (normalized) along the adhesive/backing interface with different applied loads. Analytic solutions and FEM 
results are plotted as solid lines and symbols respectively. The triangular, square, diamond and circle symbols indicate different 
applied force, i.e.,  = -0.58, -2.92, -5.84 and -11.68 respectively. The true stresses near the origin are plotted in the insets.  F
(a) . (b) .  (c) .max

12 12/  max
11 11/  22

6. Stresses in region 1 with an applied force 11.68F  

Here we plot ,  and  along the adhesive/substrate and adhesive/backing interfaces in region 1 in Fig.S4 and 12 11 p
Fig.S5, respectively.

                                                  (a)                                                                                        (b)



          (c)

Fig. S4. True Stress and pressure (normalized) along the adhesive/substrate interface with an applied force . (a) 11.68F  
; (b)  and (c) .12 11 p

                                                  (a)                                                                                       (b)



                                                 (c)

Fig. S5. True stresses and pressure (normalized) along the adhesive/backing interface with an applied force . (a) 11.68F  
; (b)  and (c) .12 11 p

7.  Effect of viscoelasticity

In the beginning of the test, when the load has just been applied, a linear viscoelastic adhesive will respond to the 
load like a hyperelastic solid with the short time moduli.  For times long compared with the relaxation time of the 
adhesive, the adhesive will behave like a softer hyper-elastic solid with long time or plateau modulus.  This means 
that our analysis is valid for short and long times.   

A difficulty is that there is no universally accepted 3D nonlinear viscoelastic model for adhesive behavior.  Here 
we carried out a preliminary study of viscoelastic effect using a simple linear viscoelastic model:  we replace the 
moduli in the Yeoh model by relaxation moduli with a one-term Prony Series (that means the adhesive has only 
one relaxation time), that is,

   i =1,2,3      /t
i i iC t C t C t e      

where  is the characteristic relaxation time.  We carried out finite element (FE) simulations using this model.  In 
Figure S6 we plot the FE shear strain  versus normalized position .with different time.  The applied force in  1x

figure S6 is .  We also plot our analytic result by simply substituting the relaxation    1/ 5.84     LTF b C t l t
moduli into equations (16-18).  As expected, the shear strain distribution along the interface predicted by FEM and 
our analytic solution is the same for short and long-times.  At intermediate times (e.g. t = relaxation time) the shear 
strain distribution is bounded by these two limits. Surprisingly, our analytical solution agrees well with the finite 
element result at this intermediate time.

I



Figure S6.  Shear strain  plotted versus normalized position .with different time.  FEM results are presented by  1x
different lines, and symbols are the analytic solution obtained using eqs.(16-18).
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