Local dynamics in supramolecular polymer networks probed by Magnetic Particle Nanorheology

Melissa Hess,^{a, b} Eric Roeben,^a Axel Habicht,^c Sebastian Seiffert,^c Annette M. Schmidt^a

^a Institute of Physical Chemistry, Chemistry Department, Faculty of Mathematics and Natural Sciences, University of Cologne, Luxemburger Str. 116, D-50939 Köln, Germany. Email: annette.schmidt@uni-koeln.de.

^b Institute for Complex Systems, IHRS BioSoft, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany.

^c Institute of Physical Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, D-55128 Mainz, Germany.

Figure SI-1 a) Normalized real and imaginary part of the susceptibility χ^* and b) loss moduli G" determined by the *GDB* model in dependence on frequency *f* for PEG-(OH)₄ aqueous solutions. The mass concentration is varied between 0 - 20 m% (black: $\mu = 0$ m%; dark red: $\mu = 2.0$ m%; red: $\mu = 2.4$ m%; light orange: $\mu = 3.4$ m%; light green: $\mu = 4.8$ m%; dark green: $\mu = 5.9$ m%; turquoise: $\mu = 7.0$ m%; blue: $\mu = 11.1$ m%; violet: $\mu = 14.9$ m%; light violet: $\mu = 20.0$ m%). For a better overview, not all measured curves are shown.

Figure SI-2 Comparison of macroscopic (full symbols) and nanoscopic (empty symbols) storage G' (color) and loss moduli G'' (black) in dependence on frequency f for Co²⁺/ PEG-(L)₄ with a) $r_{M/P}$ = 1.09 and b) $r_{M/P}$ = 2.17 for μ_{PEG} = 3.8 m%.

Figure SI-3 Comparison of storage G' (full symbols) and loss G'' (empty symbols) moduli for a) aqueous solution of PEG-(OH)₄ ($r_{M/P} = 0$), b) aqueous solution of PEG-(L)₄ ($r_{M/P} = 0$) and c) aqueous solution of Zn²⁺/ PEG-(L)₄ ($r_{M/P} = 1.09$). The polymer mass fraction is $\mu_{PEG} = 3.8$ m% for all polymer samples.

Figure SI-4 a) Normalized real and imaginary part of the susceptibility χ^* and b) loss moduli G" determined by the *GDB* model in dependence on frequency *f* for Zn²⁺/PEG-(L)₄ with different $r_{M/P}$ ratios. The polymer mass fraction is $\mu_{PEG} = 3.8 \text{ m}\%$ for all polymer samples. Black: $r_{M/P} = 0$; red: $r_{M/P} = 0.43$; light orange: $r_{M/P} = 0.87$; light green: $r_{M/P} = 1.09$; dark green: $r_{M/P} = 1.52$; turquoise: $r_{M/P} = 1.95$; dark blue: $r_{M/P} = 2.39$; violet: $r_{M/P} = 3.26$. For a better overview, not all measured curves are shown.

Figure SI-5 Normalized real and imaginary part of the susceptibility χ^* for a) Mn²⁺/PEG-(L)₄ and b) Co²⁺/PEG-(L)₄ with different $r_{M/P}$ ratios. The polymer mass fraction is $\mu_{PEG} = 3.8 \text{ m}\%$ for all polymer samples. Black: $r_{M/P} = 0$; red: $r_{M/P} = 0.43$; light orange: $r_{M/P} = 0.87$; green: $r_{M/P} = 1.09$; dark green: $r_{M/P} = 1.52$; turquoise: $r_{M/P} = 1.95$; light blue: $r_{M/P} = 2.17$; magenta: $r_{M/P} = 2.72$. For a better overview, not all measured curves are shown.

Figure SI-6 Loss moduli G'' determined by the *GDB* model in dependence on frequency f for a) $Mn^{2+}/PEG-(L)_4$ and b) $Co^{2+}/PEG-(L)_4$ with different $r_{M/P}$ ratios. The polymer mass fraction is $\mu_{PEG} = 3.8 \text{ m}\%$ for all polymer samples. Red: $r_{M/P} = 0.43$; light orange: $r_{M/P} = 0.87$; green: $r_{M/P} = 1.09$; dark green: $r_{M/P} = 1.52$; turquoise: $r_{M/P} = 1.95$; light blue: $r_{M/P} = 2.17$; magenta: $r_{M/P} = 2.72$. For a better overview, not all measured curves are shown.

Figure SI-7 Storage moduli *G*^{''} determined by the *GDB* model in dependence on frequency *f* for a) $Mn^{2+}/PEG-(L)_4$, b) $Zn^{2+}/PEG-(L)_4$ and c) $Co^{2+}/PEG-(L)_4$ with different $r_{M/P}$ ratios. The polymer mass fraction is $\mu_{PEG} = 3.8 \text{ m}\%$ for all polymer samples. Red: $r_{M/P} = 0.43$; light orange: $r_{M/P} = 0.87$; light green: $r_{M/P} = 1.09$; dark green: $r_{M/P} = 1.52$; turquoise: $r_{M/P} = 1.95$; light blue: $r_{M/P} = 2.17$; dark blue: $r_{M/P} = 2.39$; magenta: $r_{M/P} = 2.72$; violet: $r_{M/P} = 3.26$. For a better overview, not all measured curves are shown. The data points marked in red at 5 Hz are used to calculate v for $r_{M/P} > 1$.

Figure SI-8 a) G' at 5Hz from AC susceptometry measurements and b) crosslinking density v for different M²⁺/ PEG-(L)₄ systems (Mn²⁺(green), Zn²⁺ (red) and Co²⁺ (blue)) for μ_{PEG} = 3.8 m% and varying ratio $r_{M/P}$. Macroscopic values are shown as empty circles.

a)

$$M^{2+} + L \xrightarrow{k_{1}} [M(L)]^{2+} K_{1} = k_{1}/k_{.1}$$

$$[M(L)]^{2+} + L \xrightarrow{k_{2}} [M(L)_{2}]^{2+} K_{2} = k_{2}/k_{.2}$$

$$K_{bis} = K_{1}K_{2}$$
b)

$$M^{2+} \begin{bmatrix} M(L)_{2} \end{bmatrix}^{2+} K_{2} = k_{2}/k_{.2}$$

Figure SI-9 a) Scheme for the complex formation of a biscomplex containing two ligands and b) Complex formation constants K for different metal ions.^[1-3]

References

- [1] T. Rossow, S. Seiffert, *Polym. Chem.* **2014**, *5*, 3018–3029.
- [2] R. Hogg, R. G. Wilkins, J. Chem. Soc. **1962**, 341–350.
- [3] R. H. Holyer, C. D. Hubbard, S. F. A. Kettle, R. G. Wilkins, Inorg. Chem. 1965, 4, 929–935.

4