Electronic Supplementary Information (ESI)

# Horseradish peroxidase-catalyzed hydrogelation consuming enzyme-produced hydrogen peroxide in the presence of reducing sugars

Enkhtuul Gantumur, Shinji Sakai\*, Masaki Nakahata and Masahito Taya

Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan

Corresponding Author

\* E-mail: <u>sakai@cheng.es.osaka-u.ac.jp</u>

#### 1. Estimation of sugar reducing power

*Reagent preparation:* Copper sulfate (CuSO<sub>4</sub>  $\cdot$  5H<sub>2</sub>O, 15g) was dissolved in 100 mL distilled water (Somogyi's reagent A). Anhydrous sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>, 2.5 g), Rochelle salt (COOKCHOH  $\cdot$  CHOHCOONa  $\cdot$  4 H<sub>2</sub>O, 2.5 g), sodium bicarbonate (NaHCO<sub>3</sub>, 2.0 g) and anhydrous sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>, 2.0 g) were dissolved in 100 mL distilled water (Somogyi's reagent B). Somogyi's reagent A (1 mL) and B (24 mL) were mixed right before use (Somogyi's reagent C). Ammonium molybdate ((NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>  $\cdot$  4H<sub>2</sub>O, 5 g) was dissolved in 80 mL distilled water. Then, sulfuric acid (Conc. H<sub>2</sub>SO<sub>4</sub>, 4.2 mL) was added slowly. Thereafter, sodium arsenate (Na<sub>2</sub>HAsO<sub>4</sub>  $\cdot$  7H<sub>2</sub>O, 0.6 g in 5 mL distilled water) was added and the total volume was fixed at 100 mL (Nelson's reagent). The resultant mixture stored in a brown bottle at 37°C. Glucose, galactose and mannose were dissolved in distilled water.

*Procedure:* Different concentrations of each reducing sugars (0-176 µg/mL) were added in test tubes and made up to 1 mL. Somogyi's reagent C (1 mL) was added to each tube, and the tubes were kept for 20 min in a boiling water bath. After cooling the tubes to room temperature, Nelson's reagent (1 mL) was added with gentle mixing and rested at 37°C for 5 min. Then, the absorbance at 660 nm was measured.



**Fig. S1** Calibration curves of reducing sugars determined by the Somogyi-Nelson method. The data are mean values (n=3) with their standard deviations. Photographs in the graph show the color differences of reaction solutions at 88 µg/mL.

### 2. Harvesting cell sheets

After optimal culture times, hydrogels were treated with medium containing hyaluronidase (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan, 100 units/mL). Detached cell sheets were transferred to fresh cell culture dishes and incubated at 37°C.



Fig. S2 Photographs of 10T1/2 cell-layers detached from hydrogels after transfer to fresh cell

culture dishes. Scale bars: 200  $\mu$ m. Arrows in photographs indicate cell attachments to culture

dishes.



#### 3. Effect of HRP concentration on mechanical property of HA-Ph hydrogel

**Fig. S3** Effects of HRP concentrations on Young's modulus of the resultant hydrogels obtained from HA-Ph (0.75 w/v%) and (A) galactose (44 mg/mL), or (B) mannose (44 mg/mL). The data

are mean values (n=4) with their standard deviations.



## 4. Effect of sugar type on mechanical property of HA-Ph + Gelatin-Ph hydrogel

Fig. S4 Effects of sugar type on Young's modulus of the resultant hydrogels obtained from HA-

Ph (0.75 w/v%), gelatin-Ph (0.3 w/v%), HRP (800 units/mL) and reducing sugars (88 mg/mL).

The data are mean values (n=4) with their standard deviations.