Supporting Information for: Quantised Molecular Ejection Transition in Liquid Crystal Columns Self-Assembled from Wedge-Shaped Minidendrons

William S. Fall,^{†,‡} Ming-Huei Yen,[¶] Xiangbing Zeng,[¶] Liliana Cseh,[§]

Yongsong Liu,[†] Gillian A. Gehring,^{*,‡} and Goran Ungar^{*,†,¶}

†Department of Physics, Zhejiang Sci-Tech University, Xiasha College Park, Hangzhou 310018, China

[‡]Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K. ¶Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD,

U.K.

§Institute of Chemistry Timisoara of Romanian Academy, Timisoara - 300223, Romania

E-mail: g.gehring@sheffield.ac.uk; g.ungar@sheffield.ac.uk

Contents

1	Spacings and average number of molecules per disc n in the Col _h phase	S 3
2	Calculation of Coulomb Interactions (U_n, J_{mn})	S4
3	Chain Free Energy Simulation $F_n(T)$	S6
Re	ferences	S8

1 Spacings and average number of molecules per disc *n* in the

Col_h phase

Table S1: Calculation of average number of molecules $\langle n\rangle$ in a unit cell (disc) of Col_h phase of 12Li at 70°C

$a(\text{\AA})$	32.1ª
$c(\text{\AA})$	4.2 ^b
Volume of unit cell	3.74
(10^3 Å^3)	
Volume of 12Li	1.24 ^c
$(10^3 \text{ Å}^3/\text{molecule})$	
$\langle n \rangle$	3.0

a: From Fig. 2a. **b**: from Fig. 1d. **c**: Experimental density of 1.02 g/cm³ for 12Li measured in crystalline state at room temperature¹ was increased by 7% for expansion on melting and extrapolated to 70 °C using thermal expansivity $9.49 \times 10^{-4} + 1.35 \times 10^{-6} T - 0.53 \times 10^{-8} T^2 + 6.28 \times 10^{-11} T^3$ K⁻¹, where *T* is temperature, reported for alkane n-C₁₂H₂₆.³

Figure S1: Experimental lattice parameter vs. temperature for the Col_h phase of 12Li.

Table S2: Lattice parameter and number of molecules of 12Li per disc as a function of temperature.

$T(^{\circ}C)$	a(Å)	$\langle n \rangle$
70	32.1	3.0
90	32.23	3.0
100	32.3	3.0
110	32.37	3.0
120	32.4	3.0

Table S3: Lattice parameters and number of molecules of 12Na per disc as a function of temperature.

Phase	T (°C)	a (Å)	b (Å)	c (Å) ^a	$V_{disc} (10^3 \text{ Å}^3) \text{ b}$	$V_{mol} (10^3 \text{ Å}^3)$	$\langle n \rangle$
	65	39.6 ^c	37.8	3.7	4.80	1.19	4.02
Col _r	70	39.2°	38.2	3.7	4.80	1.20	3.99
	75	39.1°	38.6	3.7	4.83	1.21	4.00
	80	38.8		3.7	4.82	1.22	3.97
Col. 1	85	38.8		3.7	4.81	1.22	3.93
Conhi	90	38.8		3.7	4.81	1.23	3.91
	95	38.8		3.7	4.82	1.24	3.90
Col. 2	100	35.2		3.9	4.19	1.25	3.36
COI _h 2	105	34.9		3.9	4.11	1.26	3.28

a: measured from fibre X-ray diffraction (Figure S1c). **b**: In calculation of the volume of the 12Na molecule, an experimental density of 1.01 g/cm³ measured in crystalline state at room temperature is used, corrected by thermal expansion using the formula for alkane n-C₁₂H₂₆.³ **c**: $a/\sqrt{3}$.

2 Calculation of Coulomb Interactions (U_n, J_{mn})

Calculated intra-disk U_n Coulomb interactions (Equation S1), all atoms separated by radii given in Table S4. Radius of O atoms is estimated (Equation S2). O-M-O bond angle minima are 173.456° and 189.356° for configurations of n=4 or n=3 minidendrons per supramolecular disc respectively. O=C-O angle fixed at 120°, see Figure S2(a). Final values (J/mol): $U_4 = -479289$, $U_3 = -479198$.

$$U_n = \frac{N_A q^2}{4\pi\epsilon_0 n} \left(\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^{n(i\neq j)} \frac{1}{|r_{M_i - M_j}|} - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^{2n} \frac{1}{|r_{M_i - O_j}|} + \frac{1}{8} \sum_{i=1}^{2n} \sum_{j=1}^{2n(i\neq j)} \frac{1}{|r_{O_i - O_j}|} \right)$$
(S1)

$$R_{O^{\frac{1}{2}}} = \frac{1}{2} \left(R_{O^0} + \frac{1}{3} (2R_{O^0} + R_{O^{-2}}) \right)$$
(S2)

Element	Radius(Å)	Vdw/Ionic
Na	1.02	Ionic
С	1.70	Vdw
O^0	1.52	Vdw
O ⁻²	1.35	Vdw
O ^{1/2}	1.49	(Equation S2)

Table S4: Atomic radii used in Coulomb calculations.²

Calculated inter-disk J_{mn} Coulomb interactions (Equation S4), using atomic radii in Table S4 and inter-disk spacing of 3.8 Å. Figure S2(b) depicts 3 different configurations used to produce Figure 5 in the main manuscript, where cations and anions are rotated around an axis perpendicular to their respective centres, see Equation S4. Final calculated minima (J/mol): $J_{44} = -11241.2$, $J_{43} = 1096.3$, $J_{33} = -10090.2$.

$$n' = n_1 + n_2$$
 (S3)

$$J_{n_1 n_2} = \frac{N_A q^2}{4\pi\epsilon_0 n'} \left(\frac{1}{2} \sum_{i=1}^{n'} \sum_{j=1}^{n'(i\neq j)} \frac{1}{|r_{M_i - M_j}|} - \frac{1}{2} \sum_{i=1}^{n'} \sum_{j=1}^{2n'} \frac{1}{|r_{M_i - O_j}|} + \frac{1}{8} \sum_{i=1}^{2n'} \sum_{j=1}^{2n'(i\neq j)} \frac{1}{|r_{O_i - O_j}|} - n_1 U_{n_1} - n_2 U_{n_2} \right)$$
(S4)

Figure S2: (a) Idealised ring of alternating cations/anions, Carbon-C (gray), Oxygen-O (red), Sodium-Na (purple), O=C-O bond angle drawn explicitly. (b) Schematic of rotating disks with exaggerated inter-disk spacing.

3 Chain Free Energy Simulation $F_n(T)$

All atoms lie on the diamond lattice where the first neighbor distance a = 1.54 Å is equal to the C-C bond length in alkanes. The basis vectors are given in Table S5. Starting points of oxygen atoms are (2,-2,0), (1,1,1), (-2,2,0), which sit approximately 2.95 Å from each other. C atoms are confined to a segment thickness of 3.6 Å the closest match available to experimentally determined thickness when restricted to the diamond lattice. H atoms may cross this boundary. Each alkane conformer is formed using alternating sets of basis vectors in Table S5 where immediate back steps are forbidden i.e. *a* cannot be followed by *a*'. Conformers are self-avoiding and successive

gg' ($\pm 60^{\circ}$) torsional angles are disallowed ("pentane interference"). Chains attached at positions 3 and 5 on the benzene ring start at points of a different parity to the central chain attached at 4, hence they can be considered shorter since the position of the first C atom is effectively fixed. Total number of conformers found is 41,376,644 and 69,386,880 for the 90° and 120° geometries, respectively.

 Table S5: Diamond lattice vectors

a	(1,1,1)	a'	(-1,-1,-1)
b	(-1,-1,1)	b'	(1,1,-1)
c	(-1,1,-1)	c'	(1,-1,1)
d	(1,-1,-1)	d'	(-1,1,1)

Note: conformers.tar.bz2 containing .dat files are arranged in 3 tab seperated columns. Rows correspond to a unique configuration with 3 entries (3 chains) each with a unique identifier, i.e. 174617474527 corresponds to ac'db'ac'dc'da'bd' as defined in Table S5.

Figure S3: Minidendrons with alkyl chains in confined geometry depicting the effect of vertex angle and temperature on chain conformations. Close contacts (green) show chain crystallization. [111] direction is indicated.

References

- (1) V. Percec, M. N. Holerca, S. Uchida, W.-D. Cho, G. Ungar, Y. Lee and D. J. Yeardley, *Chem. Eur. J.*, 2002, 8, 1106-1117.
- (2) R. D. Shannon, Acta Crystall. A-Crys., 1976, 32, 751-767.
- (3) R. A. Orwoll and P. J. Flory, J. Am. Chem. Soc., 1967, 89, 6814-6822.