ELECTRONIC SUPPLEMENTARY INFORMATION

Resolving the Structural Interactions between Antimicrobial Peptides and Lipid Membranes using Small-angle Scattering Methods: the case of Indolicidin

Josefine Eilsø Nielsen¹, Victoria Ariel Bjørnestad¹ and Reidar Lund^{*1}

¹Department of Chemistry, University of Oslo, 0315 Oslo, Norway

*Corresponding author: reidar.lund@kjemi.uio.no

1. Form Factor of asymmetric flat lipid bilayer:

The form factor for asymmetric flat lipid bilayers is given by

$$F_{cos}(q) = \Delta \rho_{HG} \left(c_{HG_i} \sigma_{HG_i} \cos\left(qz_{HG_i}\right) \cdot \exp\left[-\frac{1}{2} \right] \right)$$

(S1)

$$F_{sin}(q) = \Delta \rho_{HG} \left(c_{HG_i} \sigma_{HG_i} \sin \left(q z_{HG_i} \right) \cdot \exp \left[-\frac{q}{q} \right] \right)$$

$$q^{-1} \Delta \rho_{MN} \left[1 - \frac{\pi^2 \cos \left(q \sigma_{MN_i} \right) \cos \left(q z_{MN_i} \right)}{-\pi^2 - 4q^3 \sigma_{MN_i}^2} \right] + \left(-\frac{\pi^2 \cos \left(q \sigma_{MN_o} \right) \cos \left(q z_{MN_o} \right)}{-\pi^2 - 4q^3 \sigma_{MN_o}^2} \right]$$
(S2)

where σ_n and z_n are the width and position of the distribution respectively and $c_n = V_n/(A_L \sigma_n)$. V_n is the volume of the group n and A_L is the area per lipid, which is equal to the integrated area under the curve (n = HG (inner and outer), CG (inner and outer), MN (inner and outer) and M).

2. Calculation of fraction of peptides in hydrocarbon tail region:

The integrals in Eq. 26 used to find the area of the overlap of the peptide Gaussian function and the hydrocarbon Gaussian function were derived to be the following:

$$\int_{z_p-5\sigma_p}^{z_{inter}} P_p = -\frac{c_p}{2} \sigma_p \operatorname{erf}\left(\frac{z_p-z_{inter}}{\sqrt{2}\sigma_p}\right) + \frac{c_p}{2} \sigma_p \operatorname{erf}\left(\frac{5\sigma_p}{\sqrt{2}\sigma_p}\right)$$
(S3)

$$= \frac{2(K_1(z_{MN_o} + \sigma_{MN_o}) + K_2) + \sin(2(K_1(z_{MN_o} + \sigma_{MN_o})$$

where the two constants are defined as

$$K_1 = \pi/4\sigma_{MN_o} \tag{S5}$$

and

$$K_{2} = \pi (-z_{MN_{o}} + \sigma_{MNo}) / (4\sigma_{MN_{o}})$$
(S6)

Amount of negative lipids	2.5%	10%	15%	25%§	35%
Radius	350	262	455	450	470
Area	60.4*				
Z _{CH3}	0*				
Z _{CH2o}	14.1 ±0.2**				
Z _{CH2i}	-13.8±0.2**				
Z _{CGo}					
Z _{CGi}	-15.7±0.4**				
Z _{HGo}					
Z _{HGi}	-19.3±0.2**				
σснз	2.3*				
σ _{CH2}	<i>4.9±0.3</i>				
σ_{cG}	2±0.2				
σ_{HG}	<i>4.1±0.5</i>				
DB	38.8				
DC	11.7				
VL	1123	1106	1105	1099	1098
V _{CH2}	24.5	24.4	24.6	24.4	24.4
V _{CG}	153*				
V _{HG}	176	165	158	157	155
Rg PEG	15*				
dcorr	-10	-12	-8.2	-8.6	-11
σ _{sp}	0.3	0.3	0.33	0.35	0.24

3. Fit parameters for neat liposomes with altering charge density:

Table S1 Fit parameters for liposomes with altering amount of negatively charged liposomes as indicated in the table. Hard constrained parameters are designated by * and soft constrained by limits in fitting regime indicated by **. The units for all numbers carry the appropriate power of Å. §For this sample a joint fit analysis of SAXS and SANS data was performed.

4. Fit with symmetric model:

Figure S1 Neutron and x-ray scattering plot for DMPC-DMPG 25 % liposomes and the joint fit using a symmetric bilayer model. As seen from the figure the symmetric bilayer model has a deeper minimum at intermediate q than the experimental data and, consequently, a slight asymmetry was introduced.