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Supplement Text 1

We seek a theoretical model which exhibits the non-Gaussian diffusivity distribution phenotype, 

yet requires only the most minimal features of found in both our in vivo and in vitro model systems: 

active enzymatically-driven displacement and passive processes such as diffusion. Certainly, many 

“passive” processes involve transitions between distinct energy states (e.g. attachment/detachment) and so 

their temperature behavior may be non-linear, often Arrhenius. Indeed, even bead diffusion in water (Fig. 

S1) is non-linear with temperature due to the thermal variation of water viscosity. However, on biological 

temperature scales, the linear approximation is often appropriate. By comparison, active biological 

processes show strong temperature dependence over a very small temperature range. The activity of many 

enzymes can double over just 10 C. The distinction between active and passive processes is further 

motivated by biology, in the sense that enzymatic processes usually have different modes of regulation in 

cells. It is therefore often desirable to learn from simple experimental observations whether changes are 

driven by enzymatic activity. For example, in the case of cytoskeletal transport it is often desirable to 

know whether particle immotility is due to its lack of attachment to the cytoskeletal filaments or due to 

collective action of engaged and enzymatically active molecular motors.

The minimal model we seek ideally incorporates just one passive and one active process with the 

understanding that full system behavior is governed by many such processes. For example, powerstroke 

displacement is enzymatically driven but so is the transition between high and low motor affinity states 

for the filament. We aim here to avoid considering such details in favor of model simplicity. The active 

process in our model is represented as simple jumps in either direction which are assumed to have fixed 

characteristic distance 𝛿 and occur at the same rate λ, so that the system is symmetric. These 

considerations lead to a bi-directional jump diffusion process, described in 1 dimension by the probability 

density of the cargo’s temporal displacement p(x,t), which is governed by the Fokker-Planck equationSR1 

∂𝑡𝑝(𝑥,𝑡) = 𝐷∂𝑥𝑥𝑝(𝑥,𝑡) ‒ 2𝜆𝑝(𝑥,𝑡) + 𝜆𝑝(𝑥 ‒ 𝛿,𝑡) + 𝜆𝑝(𝑥 + 𝛿,𝑡). (1)

When the rate of jumps λ is set to zero, this reduces to the classical passive diffusion process, hence D 

includes all passively driven fluctuations. This system is highly reminiscent of the more general 

continuous-time random walk (CTRW) processes (18)  but our model lacks aging and long tailed 

correlations (Fig. S5). The advantage of the above simplifications is that all the moments of the 𝜇𝑗 

distribution  can be computed analytically. 𝑝(𝑥,𝑡)

We can relate the theoretical quantities to experimental observables (cargo position along a filament) by 

considering the observations of a single trajectory denoted  where each observation of {𝑥0,𝑥1,𝑥2,…,𝑥𝑁},



cargo location  occurs at a fixed time interval  after  (typically, this is the frame timing in the 𝑥𝑖 Δ𝑡 𝑥𝑖 ‒ 1

video record of cargo motion). Arguably the simplest estimate of diffusivity in 1D is: 

𝐷𝑠
(𝑖)≔

[𝑥𝑖 + 1 ‒ 𝑥𝑖]2

2Δ𝑡 (2)

That is, for the ith time window of length , we associate a sample of the diffusivity. Although the actual Δ𝑡

procedure used in our data analysis is considerably more complex, we can use these observations as an 

estimator for D along an observed trajectory:

𝐷𝑒𝑠𝑡 =
1
𝑁

𝑁

∑
𝑖 = 1

𝐷𝑠
(𝑖)

(3)

Here Dest is a random variable representing the empirical diffusivity distribution. We are thus simplifying 

this diffusivity estimate to a mean squared displacement with lag time of 1 frame. This choice neglects 

information from the MSD curve for higher time lags. The actual practice of estimating D for a path is 

considerably more complicated – it is a weighted linear regression(17) which also tends to “distrust” 

information for higher time lags (by weighing them lower) albeit not as drastically as our choice. Our 

estimator is more tractable for closed form calculations and provides intuition for the curious statistics 

observed in experiments. In the actual procedure used for experimental data analysis, samples are pair 

point averages and are thus not truly independent. Hence, the above are lower bounds for the variance and 

skewness computed in this supplement. However, the estimator considered here produces close agreement 

qualitatively and quantitatively with the more involved overlapping window procedure (Fig. S2,S3) while 

providing intuition due to its analytical tractability.

Let  be the probability density of a jump-diffusion process in one dimension governed by the 𝑝(𝑥,𝑡)

Fokker-Planck equation (1). Ultimately, we are interested in the distribution of diffusion coefficients. 

That is, we associate an empirical diffusivity with each trajectory, reflecting how the squared 

displacement scales with time. Of course, the time in the model is a continuous rather than discrete 

variable, but we can use time increments of t to sample x(t) which then produces a random variable 

 analogous to the experimentally defined  . We emphasize the important observation that, due 𝐷 ∗ (∆𝑡) 𝐷𝑠
(𝑖)

to ergodicity of the system,  has the same statistics as . Consequently, computing the statistics 𝐷 ⋆ (Δ𝑡) 𝐷𝑠
(𝑖)

of the estimator  reduces to computing those of .𝐷𝑒𝑠𝑡 𝐷 ⋆ (𝑡)



Moments of can be related to moments of  by   where 𝐷 ⋆  𝑥 ⟨𝐷 ⋆
𝑗⟩ =

𝜇2𝑗
(2𝑡)𝑗 𝜇𝑗≔⟨𝑥𝑗⟩.

Multiplying (1) by  and integrating, we find the explicit evolution of these moments𝑥𝑗

𝑑𝜇𝑗

𝑑𝑡
= 𝐷𝑗(𝑗 ‒ 1)𝜇𝑗 ‒ 2 + 2𝜆

⌊𝑗/2⌋

∑
𝑘 = 1

( 𝑗
2𝑘)𝛿2𝑘𝜇𝑗 ‒ 2𝑘, (4)

where  is the floor operator.⌊ ⋅ ⌋

This system of ordinary differential equations is “lower triangular” in the sense that  only depends on  𝜇𝑗 𝜇𝑘

for . That is, we can solve these moments equations sequentially. For the first moment, we have 𝑘 < 𝑗

, so that . This is intuitive, as diffusion and symmetric jumps produce no displacement 𝑑𝜇1/𝑑𝑡 = 0 𝜇1 ≡ 0

on average. 

The remaining equations of interest are

𝑑𝜇2

𝑑𝑡
= 2𝐷 + 2𝜆𝛿2, 

𝑑𝜇4

𝑑𝑡
= 12[𝐷 + 𝜆𝛿2]𝜇2 + 2𝜆𝛿4,

𝑑𝜇6

𝑑𝑡
= 30[𝐷 + 𝜆𝛿2]𝜇4 + 30𝜆𝛿4𝜇2 + 2𝜆𝛿6.

(5)

The most notable feature of these statistics that we utilize is that the MSD for this process is linear and the 

slope can be estimated from experimental data which allows us to compute the mean of the empirical 

diffusivity distribution over several paths:

𝐸[𝐷𝑒𝑠𝑡] = 𝐸[𝐷 ⋆ (Δ𝑡)] =
𝜇2

2(Δ𝑡)
= 𝐷 + 𝜆𝛿2. (6)

As expected, if =0, the mean of the empirical distribution indeed recovers the true underlying passive 𝜆

diffusion coefficient. We can also see that for enzymatically driven jumps, whose rate λ scales with 

temperature per Arrhenius law, the effective diffusion coefficient will have identical scaling with the 

same activation energy. This suggests that our intuition is correct: if passive diffusion is dominant, the 

empirical diffusivity should scale linearly, otherwise it will scale as a Boltzmann factor.



 

We can proceed on to the variance, using

̃
𝜎

2≔𝑣𝑎𝑟[𝐷 ⋆ (Δ𝑡)] =
1

(2(Δ𝑡))2[𝜇4 ‒ 𝜇2
2] = 2𝛿4𝜆2 + 2𝐷2 + 4𝛿2𝐷𝜆 +

𝛿4𝜆
2(Δ𝑡)

. (7)

Notably, if  (i.e. no jumps, classical diffusion), there is no dependence on  (the sampling time). 𝜆 = 0 Δ𝑡

However, with ,  as Δ .𝜆 ≠ 0
̃

𝜎

2→∞
𝑡→0

The next moment, the skewness, is found to be

̃
𝑔

≔𝑠𝑘𝑒𝑤[𝐷 ⋆ (Δ𝑡)] =
32𝐷3(Δ𝑡)2 + 96𝛿2𝐷2𝜆(Δ𝑡)2 + 24𝛿4𝐷𝜆(Δ𝑡)(4𝜆(Δ𝑡) + 1) + 𝛿6𝜆(8𝜆(Δ𝑡)(4𝜆(Δ𝑡) + 3) + 1)

(Δ𝑡)(4𝐷2(Δ𝑡) + 8𝛿2𝐷𝜆(Δ𝑡) + 𝛿4𝜆(4𝜆∆𝑡 + 1)) 8𝐷2 + 16𝛿2𝐷𝜆 +
2𝛿4𝜆(4𝜆(Δ𝑡) + 1)

(Δ𝑡)
(8)

This result leads to several important observations. First, in the absence of jumps (λ=0), the skewness of 

each sample is 2√2, as expected for the chi-squared distribution with 1 degree of freedom. Second, the 

skewness is a non-monotonic function of D and λ. Therefore, skewness of diffusivities (unlike mean 

diffusivity) is not expected to follow Arrhenius behavior as lambda changes with temperature. It may in 

fact grow or decline or go through a peak depending on the specific parameter values. Finally, we see that 

when the system approaches immotility (D and λ are both small while other variables are finite), the 

skewness reduces to approximately:

̃
𝑔

≔𝑠𝑘𝑒𝑤[𝐷 ⋆ (Δ𝑡)]~
1

2𝜆(Δ𝑡) (8a)

An identical limit arises if t is taken to be small while other variables are held finite. Indeed, if λ<<1⁄ t Δ

then the situation is similar in spirit to classical CTRW models: the tails become relatively long and lead 

to strong deviations from Brownian behavior (Fig. S2A). What is particularly curious is that in this limit, 

step size is unimportant so that it is possible to get highly skewed distributions of diffusivities from an 

otherwise experimentally obscure active process. In practical terms, this implies that skewed distribution 

of diffusivities may serve as the first clue that the apparently diffusive process has complex constituents. 

The temperature dependent studies may then be used to try and separate active from passive contributions 

to the overall random process.



We note for completeness that the skewness does indeed decay with the number of samples as predicted 

by the Central Limit Theorem. Using the definition of  and that the samples  are independent, the 𝐷𝑒𝑠𝑡 𝐷𝑠
(𝑖)

statistics of the collection of diffusion coefficients over many paths becomes

𝑣𝑎𝑟[𝐷𝑒𝑠𝑡] =
̃

𝜎

2

𝑁
, 

𝑠𝑘𝑒𝑤[𝐷𝑒𝑠𝑡] = ̃
𝑔

/ 𝑁. 

(9)

Here N is the number of samples per path. Note that the rate of convergence is dependent on the 

magnitude of the skewness. Hence, as skewness is enhanced, convergence (to a Gaussian) becomes quite 

slow (Fig. S2), even without violating the central limit theorem or ergodicity. In all cases, skewness 

estimation from data is robust when the number of trajectories or paths (M) is large (Fig. 2B).

This result is quite intuitive as a sampling issue. As experimental setups (and consequently, this random 

variable) are “snapshots” of the process and we have no memory effects built into our model, each sample 

is an independent identically distributed random variable representing diffusion and jumps occurring in a 

fixed amount of time (sampling time). The relationship between the sampling rate and the rate at which 

these jumps occur is therefore crucial in determining the statistics. In such cases, limited experimental 

data sets can still produce strongly skewed distributions for slopes of mean squared displacement curves 

without violating ergodicity. This observation has been made in other branches of scientific literature (for 

instance, financeSR2) but seems to be underappreciated in this context. 



Supplement Text 2

The model in Supplement Text 1 represents mean-field behavior where individual degrees of freedom are 

not explicitly accounted for. This approximation is appropriate for non-processive motors in our 

experiments because our motor ensembles are relatively large: small motor ensembles would not stay 

associated with microtubules for extended times. However, the microscopic picture we have is bead-

microtubule coupling via variable number of non-processive motors at a variety of relative binding 

positions and hence a variety of coupling strengths. In this picture, when a motor detaches or attaches to 

the microtubule, the system evolves to a new overall state. We would then expect that after some lag time, 

memory effects would become negligible and mean field behavior describes the ensemble dynamics, 

which is supported by experimental observations (Fig. S4): Beyond about 1 second lag time, MSD curves 

do show a linear trend. Therefore, on long lag time scales the system becomes a good model of apparently 

diffusive behavior. Time–averaged MSD (TA-MSD) analysis(5, 6, 41) of motility data (Fig. S5) showed 

robust convergence, suggesting that the sub-diffusive process is ergodic. 

Our analysis also revealed a broad distribution of anomalous exponents from near zero to slightly above 

unity (Fig. S4B). Generally, the distribution shifted lower with declining temperature. This is naturally 

explained by the above microscopic picture: as temperature gets lower, individual motor dynamics and 

thus also ensemble dynamics slows down leading to a flattening and leveling off of the MSD curve.



Fig. S1. Diffusion coefficients for motion of 1m diameter beads in water. Weak temperature dependence 

for diffusion coefficient D is evident on both linear (A) and Arrhenius (B) plots. Fit to Stokes-Einstein 

equation for bead radius 505 nm is shown (A, red dashed line); nominal bead radius is 499±19 nm. (inset) 

Histogram of diffusion coefficients D at 22 C and a Gaussian fit (red). (B)  Bead diffusion in water 

(black) is superimposed on linear trend for N340K NCD diffusion.



Fig. S2. Analytic and simulation predictions for the skewness of the distribution of empirical diffusion 

coefficients.  Classical diffusion (λ=0) and jump diffusion (λ=1) cases are shown. (A) Skewness decays 

asymptotically to zero as a function of the number of points on each path (N). Simulation results are 

slightly but consistently higher than analytic predictions due to estimator bias. Inset histograms illustrate 

the skewness of the distribution of empirical diffusion coefficients for the indicated points in the main 

plot (blue crosses). (B) Simulated skewness as a function of the number of trajectories (M) shows 

asymptotic convergence to analytic prediction (up to estimator bias) for large M. Analytic curves: dashed 

lines. Simulated results: crosses. Parameters (unless noted): D=1, M=1000, N=100, t=1e-3, delta=0.8.



Fig. S3. Simulated skewness for small t. We examine the prediction from equation 4 in Supplement Text 

1 that as t becomes much smaller than 1/  the skewness should increase. The simulated skewness does  𝜆,

indeed grow as expected within a wide range of dt. Of course, there is a technical limit on the number of 

samples (N) we can reasonably process, but we can fix N to be large and vary the sample time t 

(meaning that the total simulation time N*t also varies). Consequently, for any finite simulation it is 

always possible to examine low enough values of t, so that the length of simulation is not long enough 

to capture accurate statistics of the jump component. We extended our modeling up to this range of t.



Fig. S4. Anomalous features of bead motility. (A) MSD curves were computed for 5, 10, 15, 22 C data as 

labeled. (B) Sub-diffusive anomalous exponents for MSD records below 1 second (grey region in (A)) at 

5, 10, 15, 22 C as labeled. Peak locations and 95% C.I. are shown for each panel. Anomalous exponents 

were estimated via log-log linearization after adjustment for noiseSR3. Each count corresponds to a full 

distinct bead trajectory.



Fig. S5. TA-MSD curves show no definitive signature of aging. Given a discrete 

trajectory r(frame number), one can compute squared displacements within the 

trajectory [r(+s)-r()]2 for some lag s. Here,  can vary from 1 to some chosen 

frame number t-s. The mean of the squared displacements computed as a 

function of t at a fixed s (here 1 sec) and then averaged across trajectories is a 

common measure of the dependence of MSD analysis on total measurement 

time. Frame numbers have been converted to frame timings for the purpose of 

plotting. The temperature is indicated just above each curve.
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