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23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2, France

November 26, 2018

Contents

S1 Single fiber characterisation S1
S1.1 Eigenfunctions of the square Laplacian operator . . . . . . . . . . . . . . . . . . . . . . . . S1
S1.2 Experimental fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S2

S1.2.1 Individual fiber properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S2
S1.2.2 Individual fiber shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3
S1.2.3 Videos of individual fiber bending modulus measurements . . . . . . . . . . . . . . S4

S1.3 Numerical fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4
S1.3.1 Perfectly ordered Reference state (Ref) . . . . . . . . . . . . . . . . . . . . . . . . S4
S1.3.2 Disordered states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S5

S2 Supplementary numerical data S6
S2.1 Reference state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S6
S2.2 Single mode disordered systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S7
S2.3 Power-law disordered systems and comparison with discrete theory . . . . . . . . . . . . . S8

S3 Supplementary theoretical materials S8
S3.1 Single-mode disorder model (SMD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S8
S3.2 Self-consistent equation for power-law disordered model (PLD) . . . . . . . . . . . . . . . S9

S3.2.1 Scaling law analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S9
S3.2.2 Complete resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S10
S3.2.3 Comparison with numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . S12

S1 Single fiber characterisation

S1.1 Eigenfunctions of the square Laplacian operator

In what follow, It is convenient to decompose fiber shape in the basis of the eigenfunctions Φqi(x) of the
square Laplacian operator (

(
∂2/∂x4 − q4

)
Φq (x) = 0) associated to curvature elasticity [1, 2].

ζ0(x) =
∑
i

ζ0,qiΦqi(x). (S1)

∗Address for correspondence, thierry.charitat@ics-cnrs.unsitra.fr

S1

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2019



Choosing boundary conditions ensuring that there are no forces nor torques on the strands we have

Φqi(x) =
cosh(αi)− cos(αi)

sinh(αi)− sin(αi)
[sinh (qix) + sin (qix)]− [cosh (qix) + cos (qix)] , (S2)

where the numerical coefficients qiL0 are determined from the relation cos (qiL0) cosh (qiL0) = 1. The
solutions obey approximately qi = (i+ 1/2)π/Na where i ∈ N?. The wave vectors qi were picked
uniformly with i = imin...N .

S1.2 Experimental fibers

S1.2.1 Individual fiber properties

An example of each type of fiber is given in Fig. S1. PP1 fibers appear to be highly disordered while
PP2 fibers exhibit a dominant mode of wavelength 5 mm together with a distribution of wavelengths of
smaller amplitudes. DEN fibers are more or less crenellated.

PP2

PP3

SW1

SW2

PP1

DEN

Figure S1: Individual images of all types of fibers studied: from top to bottom PP1, PP2, PP3, DEN,
SW1 and SW2. Bar corresponds to 1cm.

Transversal section diameters are of the order of 20 - 100 µm for PP fibers, 500 µm for DEN fibers
and 200-300 µm for SW1 and SW2.
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S1.2.2 Individual fiber shapes

Fiber shapes are characterised as follow. We first performed images of many fibers (∼ 50 per samples)
using a scaner. We then extract the coordinate of fiber images to obtain the function ζ0(xi) that we
expand numerically on the Φqi(x) basis as eqn S1.

To check our method we have performed a test experiment as follow. We first impose an initial normal

distribution of modes of variance ζ
(ini)
0,q given by

〈ζ2
0,q〉 =

c(α)

qα
, (S3)

and corresponding to a Power Law Disorder (PLD). We choose randomly amplitudes ζ ini
0,q following this

normal distribution in order to plot a test fiber ζ
(ini)
0 (x) (see Fig. ). We then printed and scanned this

image as for experimental case (see Fig. S2(a)). We use the ImageJ software to extract the coordinates

of the points which allows us to get ζ
(num)
0 (x) (see Fig. S2). We then apply our transform analysis

procedure and obtain the measured mode distribution ζ
(mes)
0,q (Fig. S2(d)):

ζ
(ini)
0,q −→ ζ

(ini)
0 (x) −→ ζ

(num)
0 (x) −→ ζ

(mes)
0,q . (S4)
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Figure S2: (a) Initial fiber ζ
(ini)
0 (x) generated from a random spectra ζ

(ini)
0,qi

. (b) Printed and digitized

fiber ζ
(num)
0 (x). (c) Comparison between (a) and (b). (d) Initial spectra ζ

(ini)
0,qi

( ) and numerical

spectra ζ
(mes)
0,q obtained using our method. The amplitudes are shifted for sake of clarity. (◦) corresponds

to moving average and ( ) to initial power law.

Results are plotted on Fig. S2(d), where we compare the initial mode distribution ζ ini
0,q, the calculated

one ζ
(mes)
0,q and the initial power law distribution. It clearly demonstrate the validity of our method.
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We present in Fig. S3(a) and (b) an example of shape analysis for PP1 fibers. Fig. S3(a) shows the
spectra obtained for 4 different fibers. We also verify by simple visual observation that all the fibers of a
stack are similar. Fig. S3(b) shows the comparison between the spectrum obtained for a fiber and that
obtained by averaging over 40 fibers.
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Figure S3: Shape analysis for PP1 samples: (a) ζ2
0,q for 4 different PP1 fibers and (b) average spectra

〈ζ2
0,q〉 over 40 fibers.

S1.2.3 Videos of individual fiber bending modulus measurements

As described in the main paper, fiber bending modulus was measured by measuring oscillations of single
fiber for SW1 and SW2 samples. A video showing an example of these experiments is shown as ESI
(oscillation-FE1(fps25).avi).

For PP and DEN samples, we have developped a stretching method also described in paper. A video
showing an example of these experiments is shown as ESI (etirement(fps25).avi).

S1.3 Numerical fibers

We build the shapes of the isolated fibers from a given mathematical function ζ0(x) along which we place
N monomers sequentially, at the equilibrium distance, a = 1, of the monomer-monomer bond interactions,
setting at the same time the corresponding equilibrium angles θ0,i. At the end of this process, we have a
fiber of N monomers in an equilibrium shape close to the prescribed function ζ0(x). In the following, we
will consider three different cases for ζ0(x). L0 = Na is the real length of the fiber, and L its projection
on the x-axis.

S1.3.1 Perfectly ordered Reference state (Ref)

We first consider fiber stacks of sinusoidal strands:

ζ
(i)
0 (x) = d0/2 cos(2πx/λi + ϕi) (S5)

where λi and ϕi are respectively the ith fiber’s wavelength and the relative phase position.
In order to calibrate our simulation method against predictions from continuous elasticity theory, we

test simple systems corresponding to single fibers with sinusoidal shapes, confined between parallel walls.
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In practice, for consistency with the more complicated systems where periodic boundary conditions are
imposed, instead of simulating single chains between walls we simulate periodic systems consisting of
pairs of chains with identical sinusoidal shapes and opposite phases

∀i,
{
λi = λ
ϕi = (1− (−1)i)π2

. (S6)

The opposite phases coupled with chains small roughness due to the shapes of individual monomers
insure that chains do not slide. In the following we will refer to this system as the reference state (Ref).

S1.3.2 Disordered states

i. Single mode disordered systems (SMD) We consider a first class of disorder by adding a random
translation phase shift ϕi homogeneously distributed in phase space ϕi ∈ [0, 2π] in equation S5. A small
dispersion of wavelengths is also introduced (λi are chosen from a Gaussian distribution of mean value
λ0 and variance δλ) to avoid perfect stacking of fibers :

ϕi ∈ [0, 2π], (S7)

P (λi) =
1√

2πσ2
e−

(λi−λ0)2

2δλ2 . (S8)

ii. Power-law disordered systems (PLD) For power-law disorder, fiber shapes were obtained by
constructing ζ0(x) as a superposition of the eigenfunctions with amplitude ζ0,qi :

〈ζ2
0,qi〉 = 〈ζ2

0 〉
(
π

Lqi

)α
ζ (α, imin + 3/2)

−1
, (S9)

where ζ (α, imin + 3/2) is the generalized zeta function [3]:

ζ (α, a) =

+∞∑
i=0

1

(a+ i)
α . (S10)

We removed the largest wavelength mode q ≤ qimin to avoid fiber regular packing (we test imin = 1 to
7) and choose to focus on systems with power-law distributions of wavelengths with associated amplitudes

We use values of the root-mean-square amplitude ζ0 =
√
〈ζ2

0 〉 of a fiber in the continuous distribution
model as a way of monitoring the vertical average extension of the fibers. 〈ζ2

0 〉 is given by :

〈ζ2
0 〉 =

1

L

∫ L

0

dx ζ0 (x)
2
, (S11)

where L is the projected length of the fiber.
In order to check the consistency between analytical and numerical descriptions, a family of shapes

of the type 〈ζ2
0,qi〉 = C/qαi was generated and then the relation

〈ζ2
0 〉
C

= ζ (α, imin + 3/2)

(
L

π

)α
. (S12)

was plotted, see Fig. S4, with 〈ζ2
0 〉 measured by the smallest eigenvalue of the fiber gyration tensor.
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Figure S4: Normalized mean-square amplitudes 〈 ζ2
0 〉 as a function of the disorder exponent α and

comparison with the analytical expression S12. In the inset we compare the real chain length L0 to its
projection L on the x-axis as a function of α.

S2 Supplementary numerical data

S2.1 Reference state
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Figure S5: Normalized pressure Pλ4/ (192κd0) vs normalized density d0/d for monomode fiber stacks
for various conditions of amplitude ζ0, bending modulus κ and wavelength λ. The theoretical function
1− d/d0 is also plotted for comparison.
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S2.2 Single mode disordered systems
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Figure S6: Normalized pressure Pλ4/ (192κd0) vs normalized density d0/d for single mode disordered
systems for various conditions of amplitude d0, bending modulus κ and wavelength λ. The theoretical
expression (equation [5] in main text) is also plotted for comparison.
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S2.3 Power-law disordered systems and comparison with discrete theory

Fig.S7 display complementary data for comparison between simulations and pressure obtained by solving
numerically the self-consistent equation Eq. 2 (main text) for the experimentally determined distributions
〈ζ2

0,q〉.
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Figure S7: (a) Normalized pressure vs normalized density 〈ζ2
0 〉1/2/d, comparison between numerical

simulation data for α = 2 to 5 and the sum of the numerical solution of the discrete self-consistent
equations (equations 2 and 3 in main text) and the single mode contribution PRef with wavelength λ
corresponding to the first mode of the distribution (dashed-dotted lines PRef for α = 2 and 5). (b) Ratio
between numerical simulation pressure and discrete numerical solution of the self-consistent equation.
Dashed line corresponds to the scaling solution.

S3 Supplementary theoretical materials

S3.1 Single-mode disorder model (SMD)

For this class of disorder we find numerically that even small perturbations in fiber ordering significantly
modify the compression behavior of the fiber stacks in the intermediate compression regime as illustrated
by data in Fig. S8.

Results for disordered systems in Fig. S8 suggest that the distribution of wavelengths plays only a
minor role in the final compression behaviour that is instead determined by the presence of phase shift
randomness. We propose here a simple analytical approach accounting for phase disorder by considering
a test fiber with a sinusoidal spontaneous shape of wavelength λ and amplitude d0. Neighbouring fibers
exerce localised forces on the test strand by direct contact, as sketched in Fig. (S8). We compute the
deformation of the test fiber by minimizing the bending energy under a prescribed distance d between
fibers and a given phase shift measured by x0, see Fig. S8. By defining the dimensionless variable u = x0/λ
and integrating over all the relevant x0 values we obtain the total pressure P as:

Pλ4

192κd0
= 2

∫ umax

0

(1 + cos (2πu)− d/d0)

(1− 2u)
4

(1 + 4u)
2 du, (S13)

with 2πumax = arccos (d/d0 − 1). Normalised numerical simulations data – see Fig. (S8) – follow a master
curve well described by our prediction in Eq. (S13). We also obtained similar results for different fiber
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Figure S8: (Color online) Numerical simulation data for normalized pressure Pλ4/ (192κd0) vs normalized
density d0/d: (∗) ordered systems of identical fibers and gaussian disordered systems with variances
σ = 0.001 (�), σ = 0.01 (�) and σ = 0.1 (4), see main text. All the simulations presented here have
the same bending modulus κ = 2048, mean wavelength λ = 128 and amplitude d0 = 4. The dashed line
corresponds to the analytical expression PRef (see main text) and the solid line to equation S13.

systems covering a range of parameters κ, λ and d0 (see Fig. S6).

S3.2 Self-consistent equation for power-law disordered model (PLD)

S3.2.1 Scaling law analysis

For the disordered shapes described by Eq. S9, using for convenience dimensionless variables x =
d/
√
〈ζ2

0 〉, B̃ = BL4/κ and P̃ = PL4/κ
√
〈ζ2

0 〉 one gets

〈e〉 = g (α)
κ

L4

〈ζ2
0 〉
d

(
BL4

κ

)(5−α)/4

, (S14)

B̃ (x) = g (α)
∂2

∂x2

(
B̃ (x)

(5−α)/4
)
, (S15)

P̃ (x) = −
∫ x

x0

dx′B̃ (x′) , (S16)

with

g (α) = −π
(2α−3)/2

2(α+1)/2
Γ

(
7− α

4

)
Γ

(
α− 5

4

)
ζ

(
α,

5

2

)−1

. (S17)

Equations S15 and S16 have the scaling solution

P̃α (d) = cp (α) d−
9−α
α−1 , (S18)

with

cp (α) =
(α− 1)

(9− α)

(
2 (9− α) (5− α)

(1− α)
2 g (α)

)4/(α−1)

. (S19)

Comparison between the scaling solution Eq. S18 and numerical simulations is shown on Fig. S11
for α = 2 to 5 as solid lines using an effective value αeff as a fit parameter. Effective values αeff are
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plotted as a function of α on Fig. S12. This again demonstrates the good agreement between numerical
simulations and self-consistent theory for α ∼ 2− 3.

S3.2.2 Complete resolution

The complete solution describing also the crossover to zero pressure can be obtained by numerically
solving Eqs. S15 and S16. The compression modulus B is given by:

B =
κ

L4
B̃ (x) = g (α)

4/(α−1) κ

L4
b (x) , (S20)

where the dimensionless modulus b (x) is solution of the differential equation :

b (x) =
∂2

∂x2

[
b (x)

(5−α)/4
]
. (S21)

As described in the main text, the scaling law b (x) = b0x
β−1 with

b0 (α) =

[
2

(9− α) (5− α)

(1− α)
2

]4/(α−1)

(S22)

β =
9− α
1− α

. (S23)

is a particular solution of the differential Eq. S21.
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Figure S9: U (f) vs f for α = 2 (red solid line), α = 3 (black dotted line) and α = 4 (blue dashed line).

To find a more general solution of Eq. S21, we define the function g (x) = b (x)
(5−α)/4

which leads
to :

g (x)
′′

= g (x)
4/(5−α)

. (S24)

We look for a general solution of Eq. S24 as g (x) = g0x
pf (x) where

g0 = [p (α) (p (α)− 1)]
(5−α)/(α−1)

, (S25)

with p (α) = 2 (5− α) / (1− α). Assuming the variable change x = e−t we obtain the following differential
equation for f :

f̈ (t) = − (1− 2p) ḟ (t) + p (p− 1)
[
f (t)

1/γ − f (t)
]
, (S26)
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where ḟ and f̈ are the first and second derivatives of f with respect to t. This equation is analogous to
the one dimensional motion equation of a particle located at f in an external potential U (f), with a fluid
friction coefficient (1− 2p) (for α > 1/2, (1− 2p) < 0). The external potential U (f) can be expressed as
a function of α :

U (f) = 2
(5− α) (9− α)

(1− α)
2

[
1

2
f2 −

(
5− α
9− α

)
f (9−α)/(5−α)

]
, (S27)

and has minimum for f = 0 and a maximum M at f = 1 (see Fig. S9).
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Figure S10: Numerical solution of differential equation S21. (a) f (x) and (b) b (x) for α = 2 (red) and
α = 4 (blue). Solid line for ḟ (t0) = ḟc, dotted line for ḟ (t0) > ḟc and dashed line for ḟ (t0) < ḟc.

It is now possible to find a solution with a vanishing compression modulus b (xc) = 0 (f (t0) = 0) for
xc = e−t0 (generally xc ≥ 1⇔ t0 < 0). The behavior of f (t) depends on the second boundary condition.
We discuss it now in terms of ḟ (tc). We have a particle leaving the point O (f (t0) = 0) (compression
modulus b (x = xc) = 0) with an initial velocity ḟ (t0) :

• For ḟ (t0) = ḟc the initial velocity of the particle is sufficient to reach the maximum value M for
t → +∞ (x → 0). The particle tends to M and the scaling law b0x

β−1 is the asymptotic behavior
of the compressibility (see Fig. S10.(a) and S10.(b), solid lines).

• For ḟ (t0) < ḟc the initial velocity of the particle is not large enough to escape from the minimum
0 and to cross the maximum value M. The particle goes close to M and then back to O. The
compression modulus is non-monotonic and b (x) → 0 for x → 0 (see Fig. S10.(a) and S10.(b),
dashed lines).

• For ḟ (t0) > ḟc the initial velocity of the particle is large enough to escape from the minimum 0 and
to cross the maximum value M and the particle leaves the potential well. The compression modulus
b (x)→ +∞ for x→ 0 (see Fig. S10.(a) and S10.(b), dotted lines).

Figure S11 displays a direct comparison between this complete solution of the self-consistent equation
and numerical simulations data, using as fitting parameters xc and α. The best values of α denoted
αeff are represented as a function of α on Fig. S12 confirming again the good agreement between
self-consistent theory and numerical simulations for α ∼ 2− 3.
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S3.2.3 Comparison with numerical simulations
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Figure S11: (a) Normalized pressure vs normalized density 〈ζ2
0 〉1/2/d, comparison between numerical

simulation data for α = 2 to 5 and solutions of continuous self-consistent theory with αeff (see Fig.
S12), (solid line) scaling law Eq.S18 and (dashed line) complete numerical solution of Eq. S21 using
mathematical method described in section S3.2.2 (only for α = 2, 3, 4 and 5 for sake of clarity). (b)
Numerical simulation pressure and numerical solution of self-consistent equation ratio. Dashed line
corresponds to the scaling solution Eq.S18.
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Figure S12: Effective exponent αeff vs α. Dashed line corresponds to αeff = α.
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