Supplementary Information

Phase behavior of main-chain liquid crystalline polymer networks synthesized by alkyne-azide cycloaddition chemistry

Yongjian Wang^a and Kelly A. Burke^{*a,b,c**}

^aChemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road Unit 3222, Storrs, CT 06269-3222

^bPolymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, CT 06269-3136

^cBiomedical Engineering, University of Connecticut, 260 Glenbrook Road Unit 3247, Storrs, CT 06269-3247

Differential Scanning Calorimetry and POM of Monomers

Figure S1. Second heating and second cooling differential scanning calorimetry (DSC) traces of (a) *5yMe* and (b) *5yH* monomer.

The second heating trace for **5yMe** (Figure S1.a) shows a small recrystallization exotherm peak at 22°C, and two endothermic valleys at 133°C and 172°C due to the melting and the LC-to-isotropic transitions, respectively. Upon cooling, **5yMe** shows two exothermic peaks, with one at 171°C due to the isotropic-to-LC transition and the other at 50°C due to crystallization. The second heating trace for **5yH** (Figure S1.b) shows a recrystallization exotherm at 65°C, and two endothermic valleys at 123°C and 227°C due to the melting and the LC-to-isotropic transitions, respectively. Like 5yMe, **5yH** shows two exothermic peaks on the cooling trace, with one at 226°C due to the isotropic-to-LC transition and the other at 76°C due to crystallization.

POM of Monomers

Figure S2. Polarized optical microscopy (POM) images of *5yMe* cooled from the isotropic melt at 10°C/min at the following temperatures: (a) 170°C, (b) 100°C, and (c) 15°C. POM images of *5yH* cooled from the isotropic melt at the same rate at the following temperatures: (c) 220°C, (d) 190°C, and (e) 20°C.

DSC traces of 5yTe films

Figure S3. Second heating DSC traces of 5yTe films: (i) N-5yTe₆-PEO3₄, (ii) N-5yTe₆-PPO7₄

First Heating DSC traces of 5yMe films

Figure S4. First heating DSC traces of **N**-*5yMe*₆-*PEO3*₄ and **N**-*5yMe*₁₂-*PEO3*₁₀. The heating trace of **N**-*5yMe*₆-*PEO3*₄ showed an endothermic valley at 76.8°C and the heating trace of **N**-*5yMe*₁₂-*PEO3*₁₀ showed an endothermic valley at 66.3°C.

DSC and DMA Data of N-5yMe₆-PPO7₄

Figure S5. (a) DSC and (b) DMA data of N-5yMe₆-PPO7₄.

Additional DMA Traces of Networks

Figure S6. Comparison of different crosslink density using dynamic mechanical analysis. (a) DMA trace of 5yMe-PEO3 network films, and (b) DMA traces of 5yH-PPO7 network films. (c) DMA trace of 5yH-PEO3 network films.

DSC Traces of Linear Polymers

Figure S7. Second heating DSC trace of **5yMe-PEO3** polymers. Glass transition of **5yMe-PEO3** polymers is at 23°C. Glass transition of **5yTe-PEO3** polymers is at -20.6°C.

DMA of N-5yTe₆-PPO7₄

Figure S8. Tensile storage modulus and tan delta as a function of temperature for N-5yTe₆-PPO7₄.

Actuation of N-5yMe12-PEO310

Figure S9. Actuation (two-way shape memory cycles) of N-5yMe12-PEO310 using controlled force DMA.

Figure S10 Actuation (two-way shape memory cycles) of LCNs measured by DMA in controlled force mode. (a) **N-5yMe₆-PEO3**₄ (b) **N-5yH₆-PEO3**₄ (c) **N-5yH₆-PPO7**₄ (d) **N-5yH₁₂-PPO7**₁₀. Intersection of horizontal tick marks with the traces indicate half actuation strain.

Room Temperature SAXS of LCNs

Figure S11. 2D SAXS patterns acquired at room temperature of: (a) **N-5yMe₆-PEO3**₄, (b) **N-5yMe**₁₂-**PEO3**₁₀, (c) **N-5yH₆-PEO3**₄, (d) **N-5yH₆-PPO7**₄, and (e) **N-5yH**₁₂-**PPO7**₁₀.

The SAXS patterns of **N-5yMe₆-PEO3**₄ (Fig. S10a) and **N-5yMe₁₂-PEO3**₁₀ (Fig. S10b) show one broad halo, indicating both networks display long-range ordering, but that there is no overall alignment to this structure. This was again expected for the polydomain networks. These halos are centered at q=0.054 Å⁻¹ (*d*=11.57 nm) for **N-5yM₆-PEO3**₄ and q=0.064 Å⁻¹ (*d*=9.76nm) for **N-5yMe₁₂-PEO3**₁₀ are thought be related to the aggregation of liquid crystals. The SAXS patterns of **5yH** networks synthesized with **PEO3** and **PPO7** also show bright halos centered at q=0.082 Å⁻¹ (*d*=7.66 nm) for **N-5yH₆-PEO3**₄ (Fig. S10c) and q=0.083Å⁻¹ (*d*=7.57 nm) for **N-5yH₆-PPO7**₄ and **N-5yH₁₂-PPO7**₁₀ networks (Fig. S10d and S10e) suggesting that these materials also have longer-range order, but that this is over a shorter distance than the **5yMe** networks.

WAXS of Stretched 5yH Networks

Figure S12. 2D WAXS pattern and 1D WAXS plot of stretched N-5yH₆-PPO7₄ (65% strain).

Figure S13. Azimuthal scan of stretched **N-5yH₆-PPO7**₄ (65% strain): (i) 2θ at 9.3° (ii) 2ϑ at 12.35°.

Figure S14. Azimuthal scan of stretched **N-5yH**₆-**PEO3**₄ (60% strain): (i) 2θ at 6.50° (ii) 2ϑ at 8.96° (iii) 2ϑ at 27.2°.

Figure S15. Azimuthal scan of stretched **N-5yH**₁₂-**PPO7**₁₀ (140% strain): (i) 2θ at 9.71° (ii) 2ϑ at 12.52°.