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1 Simulation Protocols

1.1 Preparation of Initial Configurations

A set of N seed points in a rectangular periodic box is generated and the corresponding Voronoi diagrams

are used as initial configurations for SE simulations. Three different point processes are adopted to gen-

erate a rich variety of topological structures: Perturbed lattice algorithm, Lloyd‘s algorithm, and Excluded-

volume algorithm. The perturbed lattice algorithm displaces regular triangular lattice points randomly by

Gaussian noise with a standard deviation α. As α increases, the perturbed point pattern becomes more

disordered and the corresponding Voronoi diagram contains a larger number of defects, i.e., µ20 increases.

The Lloyd‘s algorithm regularizes random Poisson point patterns through a prescribed number nL of Lloyd

iterations. Each iteration updates the point pattern by taking the centroid positions of Voronoi cells. A

larger nL generates a more ordered Voronoi tessellation and smaller µ20. The excluded-volume algorithm

places N disks with radius r consecutively in the periodic box and a new disk position is accepted only

if there is no overlap with previously generated disks. The point patterns and Voronoi diagrams become

more regular as r increases, reducing µ20. Varying α,nL , and r in these point processes, we can prepare ini-

tial configurations with a wide range of µ20. None of the results are sensitive to the particular preparation

protocol.

1.2 Target Area Assignment

Target area values are randomly generated from a gamma distribution with a given area polydispersity cA

(using other distribution shapes, such as log-normal, does not change the presented outcomes). When the

target area values are assigned randomly to initial Voronoi cells, there is no correlation between size and

topology, i.e., the resulting covariance µ11 is close to 0. On the other hand, the maximum covariance µmax
11

can be approached by assigning area values strictly in order of initial Voronoi cell topologies. If a fraction of

initial Voronoi cells nc = Nc /N is chosen and their area values are assigned in the order of topology while the

remaining cell areas are assigned randomly, the covariance lies between 0 and µmax
11 . Hence, any positive
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µ11 between 0 and µmax
11 can be imposed on the initial configuration by changing nc . Likewise, any negative

µ11 > −µmax
11 can be attained by assigning Nc area values in the reverse order of topology, although most

µ11 < 0 structures prove to be unstable states. There is no systematic difference in MS energies between

area assignment strategies.

1.3 Eliminating unstable states and Annealing

Discrepancies between the initial Voronoi cell area and the target area induce a large degree of area ad-

justment in initial energy minimization steps of SE simulations and thus generate a plethora of unstable

four-way vertices. These configurations are unstable (not metastable states), and the four-way vertices are

relaxed to two regular three-way vertices by T1 transitions. In our simulations, we define a critical length Lc ,

so that any edges shorter than Lc undergo this four-way vertex treatment. Typically, we choose Lc = 0.01L 0,

but results are insensitive to the particular choice. In addition to generating initial metastable states, further

MS can be generated by inducing T1 transitions of edges longer than Lc . In particular, we commonly use

the greedy algorithm that performs a T1 transition on the currently shortest edge in the sample. This algo-

rithm is an efficient method for annealing metastable states to the ground state because there is a positive

correlation between local edge length and energy difference between two adjacent metastable states [1].

With various initial configurations, different area assignments, and the annealing algorithm, we cover the

entire configuration space of metastable states in multiple ways and find the robust correlations between

metastable states energy and statistical measures described in the main text.

2 Relating Governing Energy Functionals to Equivalent Foam Energy

The equivalent foam energy ε∗f is used as a quantitative measure of metastable state energy that can be

compared across very different systems. In this section, we show that ε∗f is strongly correlated with the

actual mechanical energy that determines metastable states, so that a particular ε∗f implies a particular

mechanical energy value. In the tissue model, the governing energy functional εt differs significantly from

ε∗f and, unlike the foam energy, contains the parameter γ, see Eq, (2) of the main text. Rewriting εt , we get

εt = 1

6NL0
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)
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The linear term is proportional to the equivalent foam energy. Assuming that the ratio of Pi to Pi ,0 stays

approximately constant for all domains, the sum of squared perimeters
∑

i P 2
i can be approximated as a

square of the perimeter sum, which yields
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where we have defined εc ≡ 1
6NL0

∑
i Pi ,0. The equilibrium perimeter Pi ,0 is the equivalent circle perimeter

for a given area, Pi ,0 = 2
p
πAi . By definition, the perimeter length 6L0 of a regular hexagon of the average
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Figure S1: The equivalent foam energy accurately predicts (a) tissue energy and (b) spring energy. The inset in (b)

shows the cA dependence of εs,0.
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If the area distribution is taken to be a gamma distribution with a given polydispersity cA, as in most of our

simulations, εc can be estimated analytically as
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Further normalizing ε̃∗f ≡ ε∗f /εc , ε̃t ≡ εt /εc , the above relation is

ε̃t −1

(γ+2)2
=

(
ε̃∗f
γ+2

)2

−
ε̃∗f
γ+2

, (5)

which proves an excellent approximation to the simulation data for all γ< γc (Fig. S1a). Hence, the energy

landscape of ε∗f can be translated to that of εt analytically. While the spring energy εs cannot be easily

analytically translated to ε∗f , we find an empirical linear correlation between εs and ε∗f up to cA . 0.4,

εs −εs,0(cA) ≈ 1.09(ε∗f −1) (6)

εs,0(cA) ≈ 0.091c2
A −0.00312 (7)

Therefore, ε∗f can also be used as a predictor for energy in the spring system, as illustrated in Fig. S1b.

3 Estimation of M20 from Local Defect Configurations

Two local defect structures in a monodisperse foam are considered in order to estimate M20. The quadru-

ple defect configuration (two adjacent dislocations, Fig. S2a) is obtained by executing one T1 transition
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Figure S2: Schematics of local defect configurations. (a) Quadruple defect and corresponding hexagonal config-

uration; (b) Two separated dislocations with the corresponding hexagonal configuration.

starting from the regular honeycomb. A second T1 transition then separates the quadruple defect into two

dislocations separated by a layer of hexagonal domains (Fig. S2b). Assuming in both cases that these defect

configurations remain embedded in the background of a regular honeycomb, they both have µ20 = 4
N . As

the effect of T1 transitions decays exponentially with distance from the T1 edge [1], the energies of these

configurations can be approximated from local edge length changes.

Assuming that vertices of the cells involved in the defect configuration (green in Fig. S2) are free to adjust

for minimizing the domain energy, while background vertices (red in Fig. S2) are fixed at the position of the

regular honeycomb, the local energy minimum structure can be analytically computed.

In the case of the quadruple defect, there are five vertices that are free to adjust their positions (xi , yi )

to minimize system energy but symmetries about the x- and y-axes reduce the degrees of freedom to eight.

The target areas A0 = 1 of the cells are enforced by two Lagrange multipliers λ5 and λ7. The foam energy of

the quadruple defect configuration is then written explicitly as

ε(1)
f = 1+ 1

3NL0

(
4L12 +4L23 +4L34 +4L25 +4y1 +2x5 +4L1 +4L3 +2L4 −29L0

)+λ5(A5 − A0)+λ7(A7 − A0) ,

(8)

Li j and Lk are edge lengths between vertices vi and v j , and between vertex vk and the fixed vertex fk ,

respectively (cf. Fig. S2). A5 and A7 are the areas of the pentagon and heptagon, which can be computed

analytically by their vertex coordinates,

A5,7 = 1

2

∑
i

∣∣∣∣∣xi xi+1

yi yi+1

∣∣∣∣∣
An equilibrium state (extremum of ε(1)

f ) is obtained by solving the system of 10 equations
∂ε(1)

f

∂xi
= 0,

∂ε(1)
f

∂y j
=

0, and
∂ε(1)

f

∂λk
= 0. Employing Newton‘s method in Mathematica, we find vertex coordinates and the minimum

energy. The quadruple defect induces an energy increase∆ε(1)
f = ε(1)

f −ε0 over the regular honeycomb energy,

while the topological variance increases by ∆µ20 = 4
N . Under the assumption of linearity between ε f and

µ20, we obtain ∆ε(1)
f /∆µ20 = M (1)

20 = 0.031.
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The local energy minimum configuration of the two dislocations configuration is computed in the same

way. There are eleven free vertices and the domain areas are fixed by three Lagrange multipliers. The lo-

cal minimum energy ε(2)
f follows from solving a system of 25 equations, yielding M (2)

20 = 0.045. More com-

plicated configurations could also be computed analytically, but these common prototypes show that the

energy changes are likely to be in the same range. The empirical result M20 = 0.041 from a large number of

simulations is bracketed by the two prototypical values.

4 Analytic Computation of Maximum Covariance µmax
11

Practically, configurations of maximum covariance µmax
11 are obtained by assigning target area values in the

order of number of neighbors when preparing a MS in simulations. To make analytical progress, we adopt

a normal (Gaussian) approximation of the area probability distribution P (A), which in the granocentric

model [2] yields explicit predictions for the neighbor probability P (n),

P (n) =ψn+1(x)−ψn(x) (9)

ψn+1(x) = 1

2
erf

[
β

x
(2n −11)

]
. (10)

In the granocentric model, valid at the ground state, x = cA corresponds to cA. Here, we take x as a control

parameter to change µ20 at given cA for metastable-state calculations. For improved accuracy, we use a

best fit for the constant β from the ground state µ20(cA) data (Fig. S3), which yields β≈ 0.206, slightly larger

than the parameter-free β0 =
p

2π2/585 [2]. We constrain the range of n to the practical n ∈ {2, . . . ,10}, and

the range of x in our calculation is between 0 and 0.9 to ensure
∑

n P (n) = 1 and n̄ = 6. P (n) is symmetric

around n = 6, so P (6−n) = P (6+n), while ψ2(x) ≈−1
2 and ψ11(x) ≈ 1

2 to excellent accuracy. The variance of

the neighbor distribution µ20 can then be written as

µ20 =
10∑

n=2
(n −6)2P (n) = 2

(
8+7ψ3(x)+5ψ4(x)+3ψ5(x)+ψ6(x)

)
(11)

or explicitly

µ20 =
4∑

n=1
(2n −1)erfc

[
β

x
(2n −1)

]
(12)

The probability density and cumulative distribution functions for the normal area distribution are

P (A) = 1

cA
p

2π
exp

[
− (A−1)2

2c2
A

]
, (13)

F (A) = 1

2

(
1+erf

[
A−1p

2cA

])
, (14)

respectively. When target area values are assigned in the order of topology for maximum covariance, the

range of area for domains with n neighbors, An−1 < A < An , can be analytically computed. The range of n
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Figure S3: Size-topology correlation. The expression (12) with x = cA (dashed line) is an excellent approximation

to simulation data from the lowest-energy states (symbols), with the constant β obtained from a least-square fit.

fixes A1 = −∞ and A10 =∞. The cumulative probability of A < Ak must equal the cumulative probability∑
n<k P (n), so that

F (Ak ) = ∑
n<k

P (n) = 1

2
+ψk+1(x) (15)

The matching functional forms of F (A) and ψk yield the equality

Ak = 1+
p

2cAβ

x
(2k −11) . (16)

To compute µ11, we make use of

µ11 = (n −6)(A−1) = n A−6, (17)

n A =
10∑
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n
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The latter can be rewritten as

n A =
10∑

n=2
n(G(An)−G(An−1)) = 10−

9∑
n=2

G(An) , (19)

with a function G(An) defined as
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AP (A)d A = 1
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From (16), (17), (19), and (20), one obtains

µmax
11 = cA

4∑
n=1

√
2

π
exp

[
−β

2

x2 (2n −1)2
]

, (21)

which, together with (12), yields the desired parametric expression for the maximum covariance.
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5 Hexagonal polydisperse configurations

The hexagonal configuration serves as a special point in the energy landscape because the energy is invari-

ant against changes in area polydispersity. This can be understood from area adjustment of an individual

hexagon. The hexagon area can be increased (or decreased) by parallel movement of all edges; all such

configurations are still local mechanical equilibria because the 120◦ angles between edges are conserved. If

the hexagon area is dilated, the edges of an hexagon are lengthened by 2∆L2 while the branching edges are

shortened by∆L1 (see Fig. S4a). However, as the angle between adjoining edges is always 2π/3,∆L1 = 2∆L2,

and the total edge length change is zero. This illustrates that any area adjustment of an individual hexagon

does not induce a foam energy change. Any polydisperse hexagonal configuration can be attained by super-

posing individual hexagon area adjustments and these steps are all energy-neutral. Hence, the hexagonal

configuration energy stays at ε0 = 1 independent of cA. When the areas of the polydisperse hexagons be-

Figure S4: Polydisperse hexagonal foam. (a) Schematics of the area dilation for a hexagon. The edge length

increase of the hexagon is compensated by shortening of branching edges. Equilibrium hexagonal configurations

are shown for cA = 0 (b) and cA=0.3 (c). SE simulations confirm that the domain energy of hexagonal configurations

stays at ε0 for different area polydispersity.

come too disparate, four-way junctions (and thus a topological transition) will be generated, and the state-

ment of constant energy ceases to be true. Empirically, this happens when cA ≥ 0.45, and this is where the

linear theoretical energy functional εth
f should cease to be universal. In practice, some predictions remain

quantitatively valid for significantly larger cA, cf. the values of minimum and maximum energy in Fig. 3c of

the main text.

6 Derivation of Critical Equivalent Foam Energy for a Given γ

A tissue system with a given γ acquires degenerate ground states when each domain perimeter can ap-

proach the value of
(
1+ γ

2

)
Pi ,0. The corresponding critical equivalent foam energy is the sum of these

perimeters over all cells,

ε∗f ,c =
1

6NL0

∑
i

(
1+ γ

2

)
Pi ,0 . (22)
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The sum over the equilibrium perimeters was approximated as εc in Eq. (4) of the Supplementary Informa-

tion. Thus we obtain

ε∗f ,c (cA) ≈
(
1+ γ

2

)√
π

2
p

3

cAΓ(c−2
A + 1

2 )

Γ(c−2
A )

(23)

When this energy value reaches the maximum possible energy for metastable states, all configurations be-

come floppy ground states. This condition ε∗max
f (cA) = ε∗f ,c (cA) can be solved for the critical γ= γu for this

unconditional loss of rigidity. In the range of cA ∈ [0,0.45], γu increases very weakly from γu = 0.195 for

cA = 0 to γu = 0.205 for cA = 0.45.
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