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1 Microscopic twist instabilities

We seek extremal solutions to the standard Frank-Oseen free energy described in the main text,

F =
1

2

∫
V

dV
[
K1(∇ · n)2 +K2(n · ∇ × n)2 +K3(n× (∇× n)2

]
. (1)

This is done without shifting the escape away from the centerline. We compute each energy contribution in
the coordinates

x =
(
ρ cos(ψ) + ξ

)
cos(φ),

y =
(
ρ cos(ψ) + ξ

)
sin(φ),

z = ρ sin(ψ), (2)

writing dV =
√
gdρdψdφ for g the determinant of the metric tensor. We write the director field,

n = cos(Λ) sin(Ω)eρ + sin(Λ) sin(Ω)eψ + cos(Ω)eφ, (3)

satisfying the boundary conditions [1]

Λ(ρ = 1) = 0, ∂ρΛ(ρ = 0) = 0,

Ω(ρ = 1) =
π

2
, Ω(ρ = 0) = 0. (4)

Since we are particularly interested in the existence of microscopic twisting, we take the ansatz Λ = 0,
Ω = Ω(ρ) and search for instabilities to such solutions. Any ψ-dependent Ω or nonzero Λ inherently introduces
twisting structure. We integrate over ψ and φ obtaining the radial free energy densities fs, ft, and fb for splay,
twist, and bend respectively. We then write the Frank-Oseen free energy as F = K

∫
dρ(fs + K2

K ft + fb) ≡
K
∫
dρf and numerically solve the associated Euler-Lagrange equations

∂

∂Ω
f − d

dρ

∂

∂Ω′
f = 0 (5)

i
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for Ω(ρ) over the parameter space ξ ∈ (1,∞), K2

K ∈ [0, 1]. These solutions locally extremize Eqn. 1 for the

particular (ξ, K2

K ) in the Λ = 0, Ω = Ω(ρ) ansatz but are not guarenteed to be stable nor global extrema.
We test the stability of these solutions to perturbations of the form δΛ 6= 0 quantified by the second-order

condition [2]

δ2F =
∑ δ2F

δuiδuj
δuiδuj > 0, (6)

where {ui = Λ, ∂ρΛ, ∂ψΛ}. To consider this, we write these perturbations as the Fourier series consistent
with our boundary conditions

δΛ(ρ, ψ) =
∑
m,n

cmn cos
(
(π/2 +mπ)ρ

)
cos(nψ). (7)

We can represent this convergent, infinite sum as the product of finite-dimensional vectors c · δΛ. We then
rewrite the second-order condition in terms of the matrix elements

Umnpq = δ2F [δΛmp, δΛnq] (8)

as δ2F = cTUc evaluated at Λ = 0, Ω = Ω∗(ρ). Instabilities are then indicated by the existence of negative
eigenvalues λ− of the matrix U whose eigenvectors c− are the coefficients of an energy reducing perturbation
since

δ2F = cT−Uc− = λ−cT−c− = − | λ− || c− |2< 0. (9)

While perturbations to Ω may be included in the form δΩ(ρ, ψ) =
∑
dmn sin(mπρ) cos(nψ), we find they do

not change the observed microscopic twisting instabilities.

2 Dependence of elastic moduli on escape shift σ

Searching for shifts of the escape which minimize the free energy in the main text, we restricted our analysis
to the one-constant approximation to explicitly show the shift’s dependence on aspect ratio. While the exact
values of the elastic moduli certainly affect the σ∗ which minimizes the free energy, we find by varying the
elastic moduli in two-constant approximations over several orders of magnitude with three different aspect
ratios that generically σ∗ < 0 as shown in Fig. 1. Since the preference of shifting is dominated by reductions
in splay distortion, σ∗ → 0 asymptotically as K1/K → 0. A similar trend is observed as bend distortions
become more expensive. Interestingly, the behavior of σ∗ at large K2/K appears dependent on aspect ratio.

Figure 1: The critical σ∗ as a function of change in elastic modulus for a) splay, b) twist and c) bend, show
for the aspect ratios ξ = 1.1, 1.5, 5.

Fig. 2 shows the effect of the shifted core on the escaped radial profile β(ρ) as the aspect ratio of the torus
is varied. The β profiles are solutions to the Euler-Lagrange equations using the shifted toroidal coordinates
with σ = σ∗ for each value of ξ. When σ = 0, all β(ρ) profiles barely deviate from the cylindrical solution
Ω(r) = 2arctan(r).



Figure 2: a) The solutions for β(ρ) where σ = 0, for 1/ξ ∈ {0, 0.2, 0.67, 0.8}. Note that all profiles approxi-
mate the cylindrical solution. b) The solutions for β(ρ) when σ = σ∗.

3 Energy density

We consider how shifting the escaped core changes the energetics of the twistless homeotropic tori. We
solve the Euler-Lagrange equations for the escaped profile Λ(r) for the centered torus and β(ρ) (evaluated at
σ = σ∗) for the shifted core. Fig. 3 shows a 3D rendering of this change in free energy density. The energy is
always lowered except for the bend free energy in tori with small aspect ratios (approaching the horn torus
limit).

Figure 3: The height maps (a-d) correspond to the density plots in Fig. 4c-f, respectively. They depict
the change in free energy density between the centered radial escape fi(Λ = 0,Ω(r)) and the shifted radial
excape fi(α = 0, β|σ=σ∗(ρ)), where i denotes one-constant approximation (a), splay (b), twist (c) and bend
(d).
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