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S1. List of symbols 

 

 A  area covered by the monolayer 

 A0  area covered by the monolayer in the initial moment 

 C  concentration of the surfactant 

 C(z = 0) subsurface surfactant concentration (right next to the surface) 

 Ceq equilibrium surfactant concentration with respect to monolayer, Ceq = S/Ka 

 Cs  solubility of surfactant crystals 

 D  diffusion coefficient of the surfactant 

 jS  rate of the (monolayer)→(subsurface) barrier process of desorption, jS = vd  va 

 KLC the empirical coefficient in eqn (24) for d vs. 1 in the LC phase 

 KLE the empirical coefficient in eqn (24) for d vs. 1 in the LE phase 

 Ka  adsorption constant of the surfactant 

 kB  Boltzmann constant 

 kd  rate constant for desorption, vd = kdCeq 

 k  rate constant for desorption of Motomura et al., vd = k 

 n  amount of surfactant in the monolayer [mol] 
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 T  temperature 

 t  time 

 tmax experimental time for transition to convective diffusion regime 

 va  adsorption rate, va = kdC(z = 0) 

 vd  desorption rate, vd = kdCeq 

 z  cartesian coordinate normal to the surface 

 

   hard disc area of an adsorbed surfactant molecule ( = 16.5 Å2 for alcohols) 

   crystallographic/collapse area, = 1.1 = 18.2 Å2 for alcohols 

   lateral attraction parameter 

   adsorption of the surfactant 

 S   surface activity coefficient of the surfactant 

   chemical potential of the surfactant monolayer 

 0  standard chemical potential 

 s  chemical potential of the surfactant crystal 

 s =   s 

 S  surface pressure, S = 0 –  

   surface tension 

 0  surface tension of the neat surface of the solution 

 s  the value of  for the crystal’s spread monolayer 

 d = /kdCeq, characteristic time for desorption 

 tr = D/kd
2
, characteristic time for transition from barrier to diffusion controlled regime 

 

 

S2. The Wilhelmy method and the surface tension of water 

 

To determine the surface tension, we measured the weight of a 19.53 mm wide platinum plate 

attached at the studied surface. As all techniques for surface tension measurement, the 

combined Langmuir trough/Wilhelmy plate method is not straightforward to use and requires 

special measures to be taken against artefacts. The main problems associated with it are  

 (i) fouling with surface active impurities has to be avoided;  

 (ii) complete wetting of the plate is required;  

 (iii) the location of the plate with respect to the surface has to be fixed (slow evaporation 

can lead to a decrease of the water level, and fast barrier movement can increase the water level, 

affecting the results); 

 (iv) a number of dynamic effects (kinetics of adsorption and desorption; natural convection 

and convection due to the movement of the barrier; leakage of surfactant through the barrier; 

evaporation of the water, the surfactant, and the organic solvent in which the surfactant is 



dissolved upon spreading; deboarding, collapse and slow kinetics of phase transitions in the 

monolayer) have to be considered when the data is interpreted;  

 (v) in the case where the spreading pressure of crystals is measured, crystals often attach 

to the plate and alter the signal. 

Details on the procedures that we use against these artefacts as a standard in our laboratory are 

given in ref. [17] (surface rinsing, cleaning and prewetting of the plate etc.). With regard to (i) 

and (ii), pure water is the worst-case scenario: in the presence of a dense monolayer of the 

studied surfactant, impurities affect little the state of the surface, and the wetting is significantly 

improved. Therefore, we measured the surface tension 0 of pure water before each experiment. 

The measured 0 are shown in Figure S1 as a function of T. The line is a linear regression over 

the data, and gives 0/[mN/m] = 75.64-0.138T(°C), in excellent agreement with the accepted 

literature values. However, the standard deviation is significant: 0.3 mN/m. 

 

Figure S1. Surface tension of water. 

 

S3. Measuring the spreading tension with bubble profile analysis in saturated 

aqueous dodecanol 

 

For the measurements with bubble profile analysis tensiometer we used the same saturated 

dodecanol solutions as for experiments with the Langmuir trough. The work area of the 

apparatus is set to the required temperature by a thermostat. A quartz crystal cuvette is filled 

with 25 mL solution, saturated at the desired temperature. The cuvette is then covered with a 

top through which a glass capillary is fitted and dipped into the solution. An air bubble with a 

fixed area is formed at the tip of the capillary end and then the experiment is started. The 

apparatus is recording the surface tension variation with time, caused by dodecanol adsorption. 

During the experiment the surface area of the bubble is kept constant. The duration of the 

experiments was 4-6 hours, and continued until the surface tension vs. t curve reaches a plateau 

value. 



 

Figure S2. Dynamic surface tension of a bubble in saturated C12H25OH solution at 25 °C. 

The first kink in Figure S2 (the small plateau portion indicated with pt) corresponds to the LE-

LC phase transition. We are unsure what could be the reason the second kink (marked with “?”) 

– we observed the same feature at 17 °C. No similar feature is observed at this particular surface 

tension in the  vs. 1/ isotherm, see Figure 2. The shape of it suggests a sudden increase in 

the rate of the adsorption, which might correspond to a convection transition similar to those 

occurring in the isobaric desorption experiments (the arrow in Figure 6). The curve reaches a 

plateau after 4 h, corresponding to saturation of the surface and to value of  equal to the 

spreading tension of crystals (s in the Figure S2). 

 

 

S4. Correcting the adsorption isotherms for the solubility of the dodecanol 

and the kinetics of the LE-LC phase transition 

 

We compressed the monolayer as quickly as possible to minimize the losses due to dissolution 

(a compression run takes less than a minute). This option has a price – the monolayer needs 

some time to relax to its equilibrium state, especially in the region where the phase transitions 

gas-LE and LE-LC occur. If the compression is fast enough, we can approximately assume that 

the desorption is under barrier control. In this case, the flux of surfactant out of the surface is 

given by jS = kdCeq = /d and the mass balance of the surface is given by the equation 
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compare to eqn (12). This equation is valid for both the isobaric runs and the normal 

compressions. For the isobaric regime of the Langmuir balance, where the adsorption  is 

constant, eqn (1) leads to 
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i.e. eqn (14).  
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Figure S3. Reciprocal desorption time 1/d as a function of the surface pressure: results from isobaric 

desorption experiments at 17 °C. Orange squares: 1st iteration (2-parametric fits with eqn (13)). Blue 

circles: 2nd iteration (1-parametric fits with eqn (13)). Blue dot line: polynomial regression with 

eqn (3). Solid line: last iteration, eqn (24)&(16). 

 For every temperature and every surface pressure value, we fitted the isobaric data with 

eqn (13), as a first iteration, in order to determine both d and tr. The results are not very 

accurate, but still good enough for the correction. The data for 1/d as function of S are given 

in Figure S3 (orange squares). The results were interpolated using the regression formula: 
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We found that a quadratic or cubic polynomial is sufficient for the regression. The desorption 

time d is assumed to tend to infinity when S = 0 (infinitely dilute monolayer); therefore, 

eqn (3) has no constant term. 

 With d known, we can proceed to the integration of the kinetic equation (1) for the normal 

compression run to obtain the dependence of the total adsorbed quantity on time, n(t). We 

multiply both sides of eqn (1) by 1dt, and use that n/A = : 
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Integration yields: 
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The integral J can be computed at each time step of the compression run using the following 

recurrent formulation of the Newton trapezium method: 
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here, d,i = d(i
S
), as given by the interpolation (3), and i

S
 is the surface pressure measured at 

time ti. Once Ji is known, we use eqn (5) in the form 
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In all cases, we did one or two iterations by using the results from Sec. 3.4 for d, i.e.  

 (i) we used the first iteration for  from eqn (7) to compute the solubility of the monolayer 

used in Sec. 3.4 to deal with the isobaric data and calculate the second iteration for d (the first 

being the one obtained from the 2-parameter fit, orange squares in Figure S3, and the second 

being the blue circles). 

 (ii) We used the second iteration for d to compute a new interpolation according to  

eqn (3), and use this interpolation in eqn (5) to produce a second iteration for J. 

 (iii) The new J has been used to produce a second iteration for  via eqn (7). 

The improvement from the iterations after the first was insignificant, even though the difference 

between the d in Figure S3 and the more accurate ones obtained in Sec. 3.4 is often large in the 

LC region. 

 Our previous procedure for solubility correction has been tested in ref. [17] by comparing 

the results from monolayer compression at different rates of motion of the barrier of the trough. 

We did a similar test with the new procedure. Two compression runs of dodecanol monolayer 

at 25 °C were performed, one at the highest possible velocity of the barrier, 270 mm/min, and 

the other at a 3-fold lower speed of 90 mm/min. The results before and after the correction are 

illustrated in Figure S4. Before the correction, the slow isotherm is visibly shifted towards lower 

areas. After the correction, the two are in reasonable agreement, which proves the usefulness of 

the procedure. For the higher velocity, the correction leads to actual areas per molecule by 1-2 

Å2 larger than the apparent areas (and less for lower temperatures). The figure also gives an 

idea of how bad the assumption for desorption under barrier control is: the slight misfit of the 

two curves is because of the overcorrection of the slower isotherm (where diffusion slows down 

the process additionally, which is not accounted for in the correction procedure). As seen, the 

difference is small enough to ignore (smaller than the reproducibility of the isotherms). 

 

Figure S4. Surface tension vs. apparent area and corrected area per molecule of dodecanol spread on 

water at 25 °C: data for two barrier velocities, 90 and 270 mm/min. The dashed lines are before the 

correction. 



 Our dodecanol isotherms can be compared with those of Fainerman et al. [50] at 10 and 15 

°C. Especially at 15 °C, their results are shifted towards higher densities (Figure S5); the LC 

region is approaching unrealistic areas smaller than the crystallographic area of solid alkanes 

(1/ < 18.2 Å2). This means that the data from [50] are significantly affected by solubility as 

well. In addition, the LE-LC phase transition of Fainerman et al. is at slightly higher surface 

pressure than ours. This can be explained either by the presence of impurities in theirs or our 

dodecanol, or by imperfect thermostating (the temperatures of Fainerman et al. appear to have 

been by ~2° higher than ours). 

 

 

Figure S5. Comparison between our isotherms at 10 and 15 °C and those by Fainerman et al. [50]. 

 

 Kinetics of the LE-LC phase transition. Since we compress the monolayer quickly, we 

have to correct for the increased dynamic surface pressure in the phase transition region. Once 

the LC domains are formed, they start to interact repulsively with each other [51], and the force 

applied by the barrier on the heterogeneous monolayer is partly acting against this repulsive 

force (similar effects are common in the three dimensional liquid-solid phase transitions, when 

the fractal net of solid crystals in touch with each other start to have an elastic answer against 

the external force). The LC region covers a very short range of areas, and we usually have only 

5-6 points in this region; the first few of them are affected by the dynamics of the phase 

transition, and the last few are affected by the collapse. In view of these complications, we 

decided that the crudest approximation for the equilibrium shape of the LC region – a line – is 

good enough. The following procedure was applied to all data: 

 (i) Identify the point at which the phase transition starts (indicated with an arrow in Figure 

S6); the data right of this point corresponds to homogeneous LE phase, while the data left of it 

refers to a heterogeneous surface with LC domains dispersed in an LE film (probably, the 

system relaxes to homogeneous LC monolayer eventually, but it is very likely that the LC 



domains and the two-dimensional LE films between them will survive even at significant 

compressions, close to the collapse). 

 (ii) The data in the LE region are fitted with eqn (16) (S > S
pt) – let the respective function 

be fLE(S). The data for the heterogeneous monolayer is fitted with a polynomial (of degree 3 

or 4); we call the respective function fhet(S). 

 (iii) The point at which fLE(S) = fhet(S) identifies the phase transition pressure tension S
pt 

and the respective equilibrium LE adsorption LE. 

 (iv) The data for the heterogeneous monolayer has an inflection. The tangent line through 

the inflection point of fhet is constructed and is assumed to represent the equilibrium state of the 

LC monolayer (the equilibrium LC line in Figure S6). 

 (v) The point of cross-section of the equilibrium LC line and the horizontal line S = S
pt 

defines the area of the LC monolayer in equilibrium with the LE film. 

 (vi) The value of the equilibrium spreading pressure S
pt is substituted in the equation for 

the equilibrium LC line; this yields the area of the equilibrium spread layer. 

 This procedure is illustrated in detail in Figure S6, and also in Figure 2, in less detail. The 

edges of the horizontal dashed lines are part of the binodal for the LE-LC transition. It is 

remarkable that the slope of the LC region in Figure 2 (right) does not depend on the 

temperature significantly. The parameters of eqn (16) obtained via this procedure are 

summarized in Table . 

 

 

Figure S6. Correction for the kinetic effects during the LC-LE phase transition. The significant 

repulsion between the LC domains formed during the phase transition leads to a kinetic increase of the 

surface pressure S. The observed S vs. 1 curve in this region is therefore below the theoretically 

expected horizontal line for a first order phase transition. 



Table S1. Parameters of the equation of state (16), as obtained from the corrected S vs. 1/ isotherms. 

T 10 °C 15.4 °C 17 °C 20.2 °C 22.9 °C 25 °C 

g1 [Å2] 24.2836 30.4535 31.4014 22.2778 23.07556 14.2358 

g2 -0.0269519 -0.238060 -0.238816 -0.134695 

 

-0.121569 -0.0585756 

g3 -0.972393 -0.758748 -0.755349 -0.859611 -0.872810 -0.934531 

m1 1 5 4 2 2 1 

m2 30 19 15 14 14 19 

m3 1 3 2 2 2 2 

g4 [Å2] 22.5770 22.2171 22.1276 22.9717 23.6772 24.8072 

g5 [Å2m/mN] 0.0978461 0.0875110 0.0762142 0.107170 0.105664 0.146501 

S
pt [mN/m] 7.38686 12.1554 14.5308 18.1982 20.8908 23.8605 

a
L
p
E
t   [Å

2] 30.07 28.2120 27.0654 26.1812 26.0406 25.0290 

a
L
p
C
t   [Å

2] 21.85 21.1534 21.0201 21.0214 21.4697 21.3116 

acollapse [Å2] 18.00 18.12 18.56 17.96 18.73 17.9492 

 

 Figure S7 illustrates the computation via the Gibbs equation (3) of the chemical potential 

s =   s from the isotherm fits just discussed. The state of the surfactant in the crystal is 

used as a standard state – the integration starts at the spreading pressure of dodecanol crystals. 

 

Figure S7. Graphical representation of the chemical potential s. The surface pressure vs. area 

isotherm at 20.2 °C is used to compute the value of s at S = 9.85 mN/m (corresponding to 1/ = 30 

Å2)According to eqn (3), s is given by minus the shaded area. s
S
 is the spreading pressure of 

dodecanol crystals. 

 

 

 



 For the sake of completeness and for future reference, we also analysed the data for the 

LE-LC phase transition pressure S
pt as a function of temperature. Unlike the area per molecule, 

the surface pressure of the phase transition is unaffected by the desorption and the leakages, so 

we collected a significant amount of data in the range 10-30 °C, Figure S8. The line in this 

figure is a quadratic fit. Using the data for S
pt from Figure S8 and the phase transition areas a

L
p

E
t  

and a
L
p

C
t  from Table , we were able to compute the heat of the phase transition hpt through the 

2D-Clausius-Clapeyron equation, 
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LE LC
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d Δ
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h

T T a a





. (8) 

The dependence of hpt on T that follows from this equation is illustrated in Figure S9. 

 

 

Figure S8. Surface pressure of the LE-LC phase transition as a function of the temperature. 

 

Figure S9. Heat of the LE-LC phase transition. 
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S5. Leakage through the barrier 

 

The test involved placement of dodecanol crystals in one compartment of the trough and 

measurement of the surface tension in the other (which should remain clean in the absence of 

leakage,  = 0), with a barrier separating the two compartments. In the first run (the upper 

curve in Figure S10), leakage was negligible for 4 minutes, then it caused the observed decrease 

of  in the crystal-free compartment. In the second run (lower curve), leakage was immediately 

apparent. The plateau reached at the 3rd minute corresponds to the LE-LC phase transition. 

 

 

Figure S10. An illustration of random leakage through the movable barrier: in both runs, crystallites 

are placed in one of the compartments to form an equilibrium spread monolayer at 16 °C. The surface 

tension in the second compartment (the surface of which is initially alcohol-free) is measured as a 

function of time. 

 

 

 

S6. Dodecanol – additional data 

 

Here, we present most of our desorption isobars at temperatures from 10 to 23 °C (Figure S11, 

points). These are compared to the theoretical model (13), with value of d from eqn (24)-(25) 

and value of tr from eqn (11), with the parameters from Table 2. 

 

 



  

 

  

Figure S11. Desorption isobars (relative decrement of the area vs. time) at several fixed surface 

pressures and temperatures. Solid lines: the theoretical prediction (13) for mixed barrier-diffusion 

control, with desorption time d linear with 1/ (eqn (24) with KLE and KLC from Table 2).  

 At higher temperatures (25—30 °C), the desorption is under barrier control as in Figure 9. 

However, due to the leakages, we were unable to measure the adsorption isotherms at 29 and 

30 °C, although we measured desorption isobars. Therefore, in Figure S12, the measured 

isobars are presented without comparison to theory. We attempted to estimate the required 

quantities (d and ) by extrapolation of the S vs. 1/ isotherms in Figure 2 and the d formulae 

(24)-(25) (which are strictly valid in the range 10-25 °C). Overall, the observed desorption rates 

seem to be slightly faster than the predicted ones from this extrapolation (as if the real d at 30 

°C is by ca. 25% smaller than the extrapolated). This might mean that the activation energy EA
LE

 

is underestimated, but might also be due to leakages, evaporation or, in part, to inaccurate 

extrapolation of the compression isotherm.  



 

  

Figure S12. Desorption isobars at 29-30 °C and several fixed surface pressures. The process seems to 

proceed under barrier control (similarly to the data at 25 °C in Figure 9) for at least 50-100 s, but in the 

absence of compression isotherm data, we did not try to interpret these data. 

 In Figure 13, the data of De Keyser and Joos for dodecanol is compared with the theoretical 

prediction for desorption under pure barrier control (dashed line) and desorption in the d-D 

regime (solid line). As discussed in sec. 4, in the time range of interest to us (0-200 s), the data 

indeed suggests barrier control, exactly as our measurements at 25 °C (Figure 9). 

 

Figure 13. Desorption isobar by De Keyser and Joos at 8 mN/m (probably 25 °C). Solid line: the 

theoretical prediction (13) for mixed barrier-diffusion control. Dashed line: pure barrier control, eqn 

(14). The adsorption  and the desorption time d at 8 mN/m were calculated from eqn (16)&(24).  

 



 Figure S14 illustrates the dispersion analysis of the fit of the d data in Table 2 with eqn 

(24)-(25). All values of the parameters K0 and EA that fall inside the ellipses “1.05  dev
2
min” 

will produce dispersion by 5% larger than the minimal. 

 

 

  

Figure S14. Contour plot of the dispersion of eqn (24)-(25) against the d data in Table 2. 

 

S7. Decanol data 

 

The sticky disc adsorption model predicts a theoretical surface pressure vs. concentration 

isotherm S
th(Ceq; Ka,,) (a numerical solution to eqn (18)-(19)&(4)). The value of the hard-

disc area  is set to the one following from crystallographic data, 16.5 Å2. The other two 

parameters are obtained through minimization of the merit function 

 
2

2 S S

a th a

1
( , ) ( ; , )

2
i i

i

dev K C K
N

       
 . (9) 

Here, Ci and S
i are the experimental surfactant concentrations and surface pressures from ref. 

[29,38,39,63,82]. We used only low pressure data with S < 30 mN/m, since it is likely that at 

higher surface pressures the monolayer is in the LC state where eqn (18) is invalid, and anyway, 

the data of Baret et al. are in the range 5—20 mN/m. The result of the regression for the best fit 

parameters is  = 20.7 and Ka = 39.25 m, i.e. ln(Ka/[m]) = 10.15. These can be compared to 

 = 14 and ln(Ka/[m]) = 9.8 from ref. [60] (the latter values are not accurate enough for long-

chained alcohols such as decanol). The comparison between the data points and the theoretical 

sticky disc curve with the best fit parameters is shown in Figure S15.  

 



 

Figure S15. Adsorption isotherm of decanol: data from ref. [29,38,39,63,82] and the best fit with the 

sticky disc model (18)-(19)&(4), with Ka = 39.25 m and  = 20.7. 

 The values obtained for Ka and  allow the computation of  and S at each surface pressure 

of Baret et al. We calculated the adsorptions by solving eqn (18) for ; this value of  was 

further substituted in eqn (19) to find the respective surface activity coefficient S. Eqn (4) was 

then used to calculate Ceq. The results for  and Ceq at the four surface pressures of Baret at al. 

are given in Table 3 in the main text. 

 This leaves a single unknown parameter in eqn (13) for the kinetics of desorption: the 

desorption rate constant d. To find d, eqn (13) has been used to fit the A vs. t data of Baret et 

al. [6] at each surface pressure. The results are illustrated in Figure S16, and the values of d are 

summarized in Table 3. An acceleration of the diffusion process is evident at the longest times 

(t > tmax) for S = 5, 10 and 15 mN/m (discussed also by Baret et al. [6]) – therefore, only the 

data at t < tmax were used for the regression. The times tmax where first signs of convective 

regime are seen were determined iteratively using positive deviations from eqn (13) as a 

criterion, similarly to the procedure for dodecanol in sec. 3.4. The time of transition is marked 

with red dots in Figure S16. 

  

Figure S16. ln(A0/A) vs t [s] for C10H21OH – data from ref. [6] (dot lines) at 4 surface pressures (5-20 

mN/m). Dash-dot lines: D-regime, eqn (15), overpredicting the dissolution rate compared to the 

experiment. Solid lines: fits to the experimental data of eqn (13) for the mixed barrier-diffusion 

mechanism (d & D). The best-fit values of d are listed in Table 3. Acceleration of the desorption 

process due to convection is evident above certain tmax (marked with circles); all data after t > tmax were 

ignored for the fit. 


