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I) Details of Simulated Systems 

Details about the simulation box dimensions are shown in Table S1.  

Table S1. Size and composition of simulated systems 

𝑵 Structure A Beads B Beads 𝒙-dimension (𝝈) 𝒚-dimension (𝝈) 𝒛-dimension (𝝈) 

𝟏𝟎 

Lamellae 

2,560 2,560 18.3 18.3 18.3 
𝟏𝟒 5,040 5,040 22.8 22.8 22.8 
𝟐𝟒 14,688 14,688 32.6 32.6 32.6 
𝟑𝟐 3,216 3,216 19.7 19.7 19.7 
𝟒𝟎 5,040 5,040 22.8 22.8 22.8 
𝟓𝟎 7,850 7,850 26.4 26.4 26.4 
𝟔𝟒 12,706 12,706 31.1 31.1 31.1 
𝟕𝟔 17,842 17,842 34.9 34.9 34.9 

𝟐𝟎𝟎 5,000 5,000 13.3 13.3 66.0𝑎 

𝟏𝟒 

Cylinder 

8,160 29,920 35.5 35.5 35.5 
𝟐𝟒 1,920 5,760 20.8 20.8 20.8 
𝟒𝟎 2,300 6,900 22.1 22.1 22.1 

𝟔𝟎 3,720 11,160 26.0 26.0 26.0 

𝟏𝟖 Gyroid 7,998 15,996 30.4 30.4 30.4 

𝟒𝟎 Sphere 880 7,920 21.8 21.8 21.8 

𝟏𝟎 

Homopolymer 

5,120 − 18.3 18.3 18.3 
𝟏𝟒 10,080 − 22.8 22.8 22.8 
𝟐𝟒 29,376 − 32.6 32.6 32.6 
𝟒𝟎 10,080 − 22.8 22.8 22.8 
𝟔𝟒 25,412 − 31.1 31.1 31.1 
𝟕𝟔 35,684 − 34.9 34.9 34.9 

𝟏𝟎𝟎 10,000 − 22.7 22.7 22.7 
𝟏𝟓𝟎 10,500 − 23.1 23.1 23.1 

 𝑎 𝑧-direction is normal to the interface. 
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II) Finite-Size Effect Analysis 

Self-diffusion coefficient (𝐷) is the most susceptible property to system size.1 Table S2 illustrates the 
effect of system size (i.e., number of domains) for diblock copolymer with Lamellae morphology on 𝐷 
for chain lengths 𝑁 = 10 (Rouse regime) and 𝑁 = 32 (reptation regime). The results indicate that finite-
size effects are minimal, leading to a slight but consistent increase in the 𝐷 values, in agreement with 
previous studies.2,3 

Table S2. Effect of number of lamellae domains on 𝐷 for two chain lengths. 

Number of Domains 𝑵 = 𝟏𝟎 𝑵 = 𝟑𝟐 

𝟏 − 0.0028 ± 0.0002 𝜎2/𝜏 
𝟐 0.014 ± 0.001 𝜎2/𝜏 0.0035 ± 0.0002 𝜎2/𝜏 
𝟒 0.016 ± 0.001 𝜎2/𝜏 − 

 

III) Cox-Merz Rule Applicability 

One method to check if the strain amplitude (𝛾0) used in oscillatory shear dynamics results in a linear 
response behavior is by testing the validity of the Cox-Merz Rule. The Cox-Merz Rule is an empirical rule 
which states that the dependence of the steady shear viscosity (𝜂) on the shear rate (�̇�) is equivalent to 
the dependence of the complex viscosity (𝜂∗) on the oscillation frequency (𝜔).4 

In our oscillatory shear dynamics simulations, 𝛾0 was fixed to 10%. As shown inf Figure S1, for chain 
length 𝑁 = 40, in the perpendicular (𝐿 ⊥) and parallel (𝐿 ∥) orientations, the Cox-Merz Rule applies 
indicating that values from our oscillatory shear dynamics simulations are derived from the linear 
response regime. 

 

Figure S1. The dependence of 𝜂 on  �̇� and 𝜂∗ on 𝜔 for a DBP with 𝑁 = 40 at 𝑇 = 2.63 𝜖/𝑘𝑏 for two flow 
orientations as indicated in the inset. 

 
IV) Self-Diffusion Coefficient and Zero-Shear Viscosity Mapping to Polyethylene 

One method of determining if the oscillatory (and simple) shear simulations are performed for a wide-
enough 𝜔 (and �̇�) range to probe experimentally relevant time scales, is to obtain the zero-shear steady 
viscosity (𝜂0) and dynamic viscosity (𝜂0

∗) to confirm that the Newtonian regime is approached. Figure S1 

(a)  

 

(b)
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showed that this was indeed the case, hence indicating that the range used in this study is sufficient to 
capture the different relaxation modes of the melt. 

Moreover, one can map the results obtained from coarse-grained simulations conducted in reduced 
units into data in real units for specific polymers for which experimental or atomistic simulation results 
are known, and thus check the level of agreement between the results. By doing so, one also obtains 
values for the characteristic mass (𝑚), time (𝜏), length (𝜎), and energy (𝜖). We mapped our results for 𝐷 
to experimental and atomistic simulations data for linear polyethylene melts5–8 (Figure S2) by matching 
the crossover molecular-weight (𝑀𝑐) of the self-diffusion coefficient (𝐷) from the Rouse to reptation 
scaling  and the relevant density of the polymer (𝜌) and temperature of the experiment (𝑇). Table S3 
lists the characteristic quantities being mapped. Using these quantities, Figure S3 shows that 𝜂0 results 
from our simulations are also in good agreement with experimental data of polyethylene. 

 
Figure S2. Simulation results for 𝐷 from this work mapped to polyethylene using conversion Table S3. Data from 
experiments and atomistic simulations are superimposed.  

 

Table S3. Mapping of characteristic quantities between KG model and polyethylene 

System 𝝆 𝑻 𝑴𝒄 𝒎 𝝐 𝝉 𝝈 

KG Model 0.85 𝜎−3  2.63 𝜖/𝑘𝑏 60 1 1 1 1 
Polyethylene6 0.77 𝑔/𝑐𝑐  450 𝐾 600 𝑔/𝑚𝑜𝑙 10 𝑔/𝑚𝑜𝑙 1422 𝐽/𝑚𝑜𝑙 9.2 × 10−13 𝑠 3.5 × 10−8 𝑐𝑚 
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Figure S3. Simulation results of 𝜂0 from this work compared to experimental and computational data for 
polyethylene using mapping of Table S3.  
 

V) Uniaxial Deformation Simulations 

The mechanical properties of polymeric materials can be characterized from their response to uniaxial 
deformation. In such experiments, a specimen is elongated in one direction, resulting in the 
simultaneous sample compression in the directions orthogonal to the elongation direction. Such 
experiments readily yield the Young's modulus (𝐸), which is a measure of how stiff the material is. The 
stiffness typically increases for systems whose chains extend in the elongation direction. 
To corroborate the argument given in the main text regarding the correlation between microscopic 
chain conformations and  orientations and the macroscopic anisotropic viscosity, we performed uniaxial 
deformation simulations of the Lamellae (L) and Hexagonal Cylinder (HC) in the two distinct orientations 
(Figure S4) (i.e., parallel and perpendicular directions). 
 

 
Figure S4. The different uniaxial flow directions possible for the L and HC morphologies, where the red arrow 
represents the extensional direction and the green arrows represent the compression directions.  
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For these simulations a deformation rate of 3.5 × 10−5  𝜐/𝜏 was used, where 𝜐 is the extension ratio 
defined as the ratio of the deformed dimension of the box to the initial undeformed state dimension. 
The stress (𝜎𝑖𝑖

∗ ) was calculated using eq. S1, where 𝑝𝑖𝑖 is the pressure tensor component in the direction 
of extension, 𝑝𝑗𝑗  (𝑝𝑘𝑘) is the pressure tensor component in the compression direction, and 𝜅 is the 

Possion's ratio, which is assumed to be 0.5 (a representative value of polymeric materials and 
appropriate for volume conserving incompressible material).9 
 

𝜎𝑖𝑖
∗ = −𝑝𝑖𝑖 + 𝜅(𝑝𝑗𝑗 + 𝑝𝑘𝑘)       (S1) 

 
𝐸 was calculated as the slope from the initial linear part of the stress−strain relation (Figure S5). In the 
perpendicular direction, chains in the L phase are more aligned in the elongation direction than chains in 
the HC phase, hence, 𝐸 for the perpendicular L orientation is larger than that of the perpendicular HC 
orientation (Figure S6). In the parallel direction, both phases have similar 𝐸 value since they have similar 
alignment (end-to-end distance distribution) in the elongation direction. These results are consistent 
with the analysis given in the main test regarding the effect of the chain conformations in the 
unperturbed state on the anisotropic viscosity trends. 
 

 
Figure S5. Stress−Strain relationship for DBPs with L and HC morphologies uniaxially deformed in the different 
possible directions (Figure S5) compared to the HP case for chain length 𝑁 = 40 and 𝑇 = 2.6 𝜖/𝑘𝑏. 
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Figure S6. Young's modulus 𝐸 obtained from uniaxial deformation for different morphologies having different 
orientations with respect to the elongation direction (as per Figure S3), for chain length 𝑁 = 40 and 𝑇 = 2.6 𝜖/𝑘𝑏. 
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