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I. Methodological details

The polymers were created as a coarse-grained bead-spring model without explicit 

twist or bending potential; that is, the bonds are freely rotating and freely jointed 

within the limits set by excluded volume interactions with nearby monomers. All 

particles including neutral monomers, the charged monomers and counterions interact 

with each other through the Lennard-Jones (LJ) potential:
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where represents the nominal diameter of each particle and defines the Lennard- 

Jones energy unit.Because the main focus of this work is on the electrostatic 

interaction in the brush system under external electric fields, the hydrophobic effect of 

neutral monomers was not considered.

The connectivity between neighboring monomers  in a same polymer chain ,i j
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is maintained by the finitely extensible nonlinear elastic (FENE) bond potential:
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where and the spring constant k was set to , which was well 5.10 R 230.0k  

tested in earlier studies. For uncharged and relaxed polymers, this parameter set leads 

to an average bond length of .0.97avr 

Both walls were modeled as a 12/6 Lennard-Jones wall potential:
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where z is the distance between a particle and the neighboring wall.The cutoff 

distance was set to to only keep the repulsive interaction.cz 612z c

The long-range Coulomb potential between any two charged particles and iq e

is:jq e
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where represents thermal energy and denotes Bjerrum length Bk T B

 (  stands for an elementary charge, , are the vacuum  2
04B r Be k T   e 0 r

permittivity and the dielectric constant of the medium, respectively). The long-range 

Coulomb interaction was calculated using the Smooth Particle Mesh Ewald method 

(SPME). Because the periodic condition is broken in z the direction for the present 

star-polymer brush system, the Ewald sum was calculated in an extended system 

which periodically repeats the original slab system in the z direction with the insertion 

of an empty space between them. The empty space has twice the volume of the 
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original slab system in this study. Furthermore, a correction term is added to the 

Coulomb potential. Therefore the total potential energy of the star-polyelectrolyte 

brush system is given by

(I5)coulwallFENELJ UUUUU total

The external electric field  was applied along the z direction perpendicular to E
r

the two parallel walls. The motion of particle with mass at position is i im  ir t

described by Langevin equation:

(I6)
2
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i i i total i i
d r drm U q eE
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r r r r

where is the friction coefficient which couples the particle to a heat i

bath, represents the random force acting on the particle and obeys the fluctuation-i
r

dissipation theorem. In the above equation, denotes the charge valence of the iq

particle (  for neutral monomers,  for charged monomers and  for 0iq  1iq   1iq  

counterions).All particles possess the same mass m and diameter . The temperature 

of the system is with denoting the amplitude of LJ potential,and the 2.1TkB 

friction coefficient  with the time unit . The computer codes 11.0m   2/1)/(  m

for Langevin Dynamics simulations were written in Fortran and are available with the 

link https://github.com/wangshaoyun/MD_Brushes.

II. Additional Figures from Simulations

https://github.com/wangshaoyun/MD_Brushes
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Figure S1. A snapshot of a row of the 3-arm polyelectrolyte brushes under a stretching electric 

field ( ).1.0E  

Figure S2. Brush center-of-mass height as a function of grafting density at different strengths of 
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the external electric field for the neutral-stem PE brushes.

Figure S3. A comparison of the fraction of grafted chains in the up- state  and the population upR

weight of grafted chains with their branching points above the mean height in response to bpH

external electric fields for the neutral-stem brushes at . The red line corresponds to . * 0.003g  upR

Please Note that , which denotes the population weight of grafted chains with their branching areaR

points above the mean height of the branching point of all grafted chains  , was obtained from bpH

the distribution of the branching points shown Figure 4.
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Figure S4. Probability distributions of the angle  formed by the two vectors connecting the branch

branching point and the two free ends on the branches in each molecule at different strength of 

external electric fields. The grafting density is .* 0.003g 
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Figure S5. Probability distributions of the angle  formed by the vector linking the two free end

ends of the two branches in each molecule with respect to the grafting substrate at different 

strength of external electric fields. The grafting density is .* 0.003g 

Figure S6. Probability distributions of the free terminal monomers under different strengths of 

external electric fields for the neutral-stem PE brushes at . 0.003g
 

Figure S7. Probability distributions of the charged monomers (a) and counterions (b) under 

different external electric fields for the neutral-stem brushes at low grafting density ( ).0.003g
 
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III. Analytical Self-consistent Field Theory

Figure S8. A schematic diagram of the Y-shaped neutral-stem brushes with two-layered structure 

adopted in the approximate analytical model.

Inside each of the two sub-layers, the electric potential is related to the spatial 

distribution of net charge via Poisson equation with mobile counter-ions following the 

Boltzmann distribution:
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where , denote the monomer densities in the lower and upper sub-layers, I
mC II

mC

respectively; is the counter-ion density at the top edge of the brush. Using  C z H 

the following two normalization conditions of monomer density profiles inside the 

two sub-layers
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equations (III-1) and (III-2) can be integrated respectively with respect to over the z

intervals and , affording 10, H  1,H H
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The net (uncompensated) charge of the brush is 
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where is the counter-ion distribution above the brush. is just the sum of  outC z netQ

the right hand sides of eqs. (III-5) and (III-6), so 
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Taking advantage of the fact that the equilibrium distribution of counter-ions outside 

the brush should coincide with that for counter-ions near a planar charged surface 

with charge density of , the distribution of counter-ions outside the brush isnetQ
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With Gouy-Chapman length .Therefore, we find 1 2 B netb Q
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The formula for the force balance at the boundary between the two sub-layers is 



10

derived next
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The above equation states that the tension force is balanced by the osmotic pressure of 

counter-ions at the boundary between the sub-layers, and the dimensionless tension 

force has been derived by Zhulina, et. al. (Zhulina, E. B.; Amoskov, V. M.; Polotsky, A. A.; 

Birshtein, T. M. Polymer 2014, 55, 5160) 
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After some simple algebra, eqs. (III-5), (III-6) and (III-11) can be simplified as eqs. 

(9), (10) and (11) in the main text. Eliminating the common factor from both eqs. 

(10) and (11) leads to
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which relates to . Adding up eqs. (9) and (10) yields1h 2h
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which relates to and . 1h 2h

Equations (9), (10) and (11) were solved numerically as follows. First, for a given 

, equation (III-13) was used to numerically obtain the corresponding . Next, for 2h 1h

the pair of and , equation (III-14) was used to get the corresponding . Finally, 1h 2h 
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was obtained through equation (11).

It can be seen from Eq. (III-13) that in the case of , the first term on the 2 1 2h 

LHS of the equation dominates over the second one, so that the second term can be 

neglected. In this case, analytical expression relating to can be obtained:1h 2h
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