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S.1. AUTOCORRELATION TIME

We present detailed autocorrelation analysis for the allPE simulations. The autocorre-

lation time depends on lipid diffusion, so we expect these results to be reasonable approx-

imations for the lipids in all simulated systems. The autocorrelation time tac is defined as

twice the exponential decay time1,

tac = 2texp = 2

∫∞
0

dt C̃(t) , (S.1)

where C̃(t) is the normalized autocorrelation function of each ρ̂i-bin in a one-component

system,

C(t) =
(
⟨ρ̂i(t

′ + t)ρ̂i(t
′)⟩− ⟨ρ̂i⟩2

)
/
(
⟨ρ̂2

i ⟩− ⟨ρ̂i⟩2
)
, (S.2)

averaged over all M bins and N = 512 lipids. ρ̂ is the single lipid midplane distribution,

i.e., ρ̂i(t) = 1 if the lipid in question occupies bin i at time t, and ρ̂i(t) = 0 otherwise

(for a one-component bilayer, ⟨ρ̂i⟩ ≈ 1/M). From Fig. S.1b, we determine that the lipid

autocorrelation time is tac = 2texp ≈ 124ns.

FIG. S.1. a: Normalized autocorrelation function C̃(t). b: The exponential decay time, texp =∫∞
0

dt ′C̃(t ′). The autocorrelation time is tac = 2texp ∼ 124ns. Data from the allPE simulation.

S.2. LIPID COMPONENT DISTRIBUTIONS

Here we present the densities ρj(s) for each lipid component j, which are used to com-

pute the relative densities ϕj(s) in Eq. (2) in the main text. These densities are computed
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by constructing s histograms of the innermost tail bead positions for each lipid while dis-

carding the initial 1 µs as equilibration. The ρj(s) are normalized as probability densities

to facilitate comparison.

FIG. S.2. Densities, ρj(s), for each lipid component as functions of s (panels a–c) and of K(s)

(panels d–f). Panel (a,d) corresponds to POPG, (b,e) to POPE, and (c,f) CL. Symbols correspond

to each of the simulations listed in Table 1 in the main text, and shaded areas to the standard error

of the mean, shown only for the CL0, CL12 and CL12b systems.

S.3. LIPID DISTRIBUTION ALONG THE BUCKLED BILAYER

Here we show the (x, z)-densities for the innermost tail-beads and the head-beads for

each lipid component in the CL12 simulation. In addition to depicting the results in

Fig. S.2 in a more intuitive albeit less quantitative form, we notice that while the planes

formed by the head-beads of POPE and CL are both at 2.1 nm from the midplane (blue

and red solid curves in Fig. S.3), the distance for POPG is slightly larger at 2.3 nm (dashed

green curves in Fig. S.3).
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FIG. S.3. xz-density plots of head- and tail-beads for each lipid component in the CL12 simula-

tion. The head bead count is multiplied by 4 for POPG and POPE, and by 8 for CL, since for

every head bead there are two and four tail beads, respectively, and the midplane contains tail

beads from both monolayers. The purple curve corresponds to the average fitted midplane, i.e.(
X(⟨γ⟩), Z(⟨γ⟩)

)
. The outer curves are parallel to the first one, separated by 2.1 nm (solid lines),

and by 2.3 nm (dashed lines). Green curves correspond to POPG, blue to POPE and red to CL.

Data from the CL12 simulation.

S.4. ION DISTRIBUTION

Here we present (x, z)-density plots for the ions in the CL0, CL12 and CL12s simu-

lations. The first two systems contain only counterions (128 Na+ ions distributed along

the bilayer surface). The CL12s simulations contain additionally 207 Cl− ions, and corre-

sponding Na+ ions, yielding a total of 335 Na+ ions. We observe that Na+ ions distribute

along the bilayer surface, while Cl− ions localize away from the bilayer.

S.5. ENHANCEMENT RATIO

Here, we give a detailed derivation of Eq. (9) in section III E in the main text. We

consider a 3-component lipid mixture, and write again the free energy per monolayer as

F = LyL

∫ 1

0

dsρ̃(s)
3∑

j=1

(ϕj(s)

2
Mj(K(s) − Kj)

2 + kBTϕj(s)(logϕj(s) − 1)
)
, (S.3)
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FIG. S.4. Ion distribution in the (x, z)-plane. Panels (a,b) correspond to the CL0 and CL12 sim-

ulations, with only counterions, which in both cases correspond to 128 Na+ ions. Panels (c,d)

correspond to the CL12s simulation, which contains 335 Na+ ions (shown in panel c) and 207 Cl−

ions (panel d).

where ϕj(s) denotes the local mole fraction of lipid species j. Equation (S.3) is subject to

the constraints ∫ 1

0

dsρ̃(s)ϕj(s) = nj , (S.4)

which fix the number ni of lipids of species i in the monolayer and the additional con-

straint

3∑
i=1

ϕi(s) = 1 , (S.5)

which ensures point-wise normalization of the molar fractions. Minimizing Eq. (S.3) with

respect to ϕi(s), leads to

−kBT logϕj(s) =
Mj

2
(K(s) − Kj)

2 + µj + α(s) , (S.6)
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where µj is a Lagrange multiplier (chemical potential) from enforcing condition (S.4), and

α(s) is a function that acts to enforce the point-wise constraint (S.5). We find

eα(s) =
3∑

j=0

e−µj−
Mj
2

(K(s)−Kj)
2

. (S.7)

The same point in s opposing monolayers has the same curvature with opposing sign

(Kupper(s) = −Klower(s)). Thus, considering both monolayers yields

log
ϕ+

i (s)

ϕ−
i (s)

=
2

kBT
K(s)

(
KiMi

)
+ µ+

i − µ−
i − (α+(s) − α−(s)) . (S.8)

Since the monolayers are symmetric the chemical potentials are the same. α(s) is however

not symmetric across the bilayer, but fortunately it does cancel for expressions of relative

fractions (log(ϕi/ϕj)). Thus, we finally arrive at the relation

log
ϕ+

i (s)ϕ
−
j (s)

ϕ−
i (s)ϕ

+
j (s)

= 2K(s)
KiMi − KjMj

kBT
. (S.9)

S.6. ADDITIONAL SUPPLEMENTARY FIGURES

Here we show a detailed version of Fig. 3d, where we depict the standard errors for

each curve as a shaded area on separate panels.
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FIG. S.5. Same as Fig. 3d in the main text, but showing each curve in a different panel, and where

the shaded areas correspond to the SEM for each system, which were omitted for clarity in Fig.

3d.
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