Electronic Supplementary Information

A comparison of the network structure and inner dynamics of homogeneously and heterogeneously crosslinked PNIPAM microgels with high crosslinker content

Judith Witte^{*1}, Tetyana Kyrey^{1,2,3}, Jana Lutzki¹, Anna Margarethe Dahl¹, Judith Houston³, Aurel Radulescu³, Vitaliy Pipich³, Laura Stingaciu⁴, Matthias Kühnhammer², Marcus U. Witt², Regine von Klitzing², Olaf Holderer³ and Stefan Wellert¹

> ¹Institute of Chemistry, TU Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany

²Institute of Physics, TU Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany

³Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstraße 1, 85747 Garching, Germany

⁴NScD Oak Ridge National Laboratory Oak Ridge, Tennessee 37831, United States

¹ Corresponding author: judith.witte@tu-berlin.de

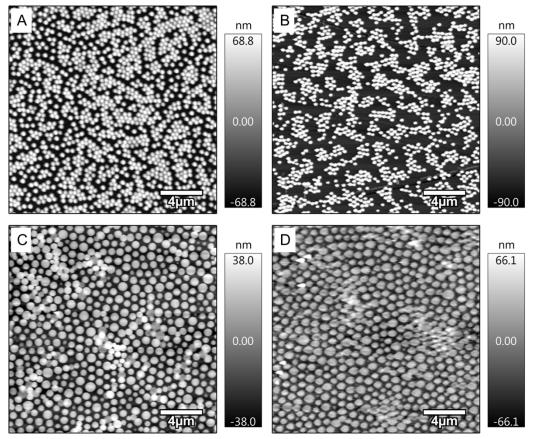
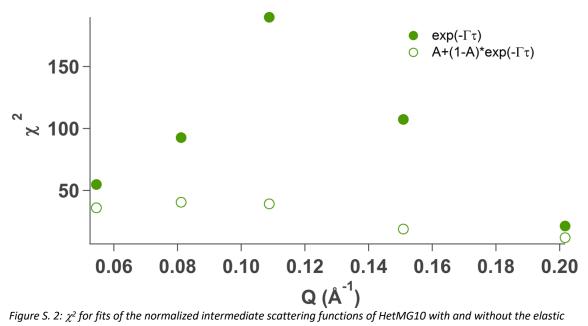



Figure S. 1: AFM images of A) HetMG10 under ambient conditions, B) HetMG10 swollen in H₂O, C) HomMG10 under ambient conditions and D) HomMG10 swollen in H₂O.

Table S. 1: Dry and swollen widths and heights of HetMG10 and HomMG10. Cross sections of 5 individual particles were analyzed and the standard deviation was calculated.

Microgel	Width _{dry} (nm)	Height _{dry} (nm)	Width _{H2O} (nm)	Height _{H2O} (nm)
HetMG10	626 <u>+</u> 57	134 <u>+</u> 8	650 <u>+</u> 45	237 <u>+</u> 15
HomMG10	885 <u>+</u> 134	48 <u>+</u> 1	1020 <u>+</u> 138	106 ± 12

Images under ambient conditions were scanned in tapping mode with AC160TS cantilevers (Olympus). Images in H₂O were scanned with TR800PSA cantilevers (Olympus).

contribution.

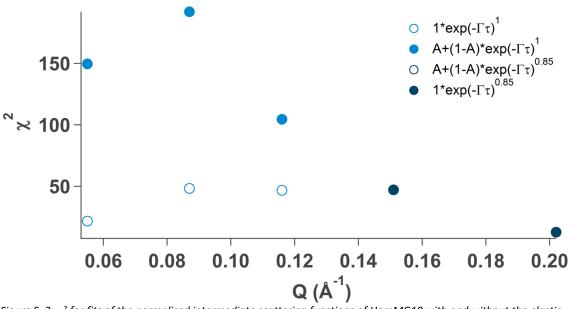


Figure S. 3: χ^2 for fits of the normalized intermediate scattering functions of HomMG10 with and without the elastic contribution. $Q = 0.15 \text{ Å}^{-1}$ and $Q = 0.20 \text{ Å}^{-1}$ were fitted with a stretched exponential with exponent $\beta = 0.85$.

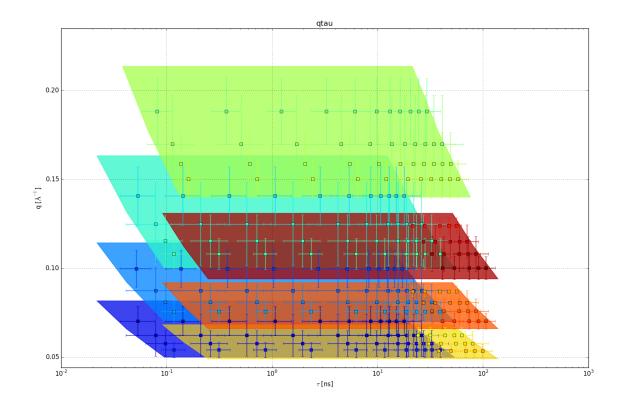


Figure S.4: Q- τ map for the measurements at the SNS-NSE at the spallation neutron source in Oak Ridge, TN.

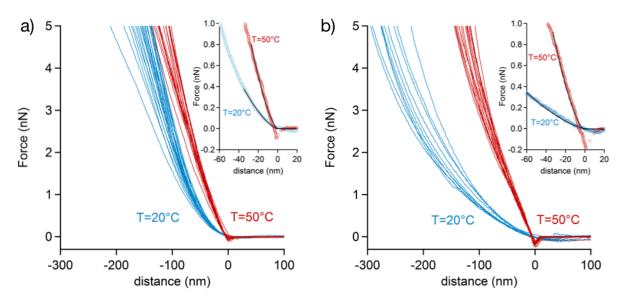


Figure S. 5: AFM force-distance curves for a) $MG_{10}P$ and b) $MG_{10}F$ at $T = 20^{\circ}C$ (blue) and $T = 50^{\circ}C$ (red). Insets show an exemplary fit according to the Hertz model (equation 1 in main text) at $T = 20^{\circ}C$ (blue) and $T = 50^{\circ}C$ (red). The positive indentation depth values were transferred into negative tip-sample-distances.

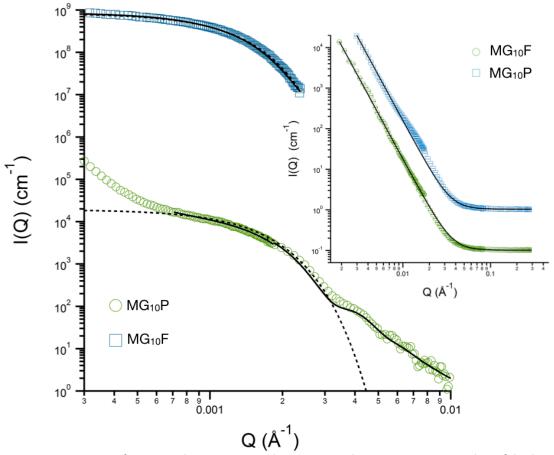
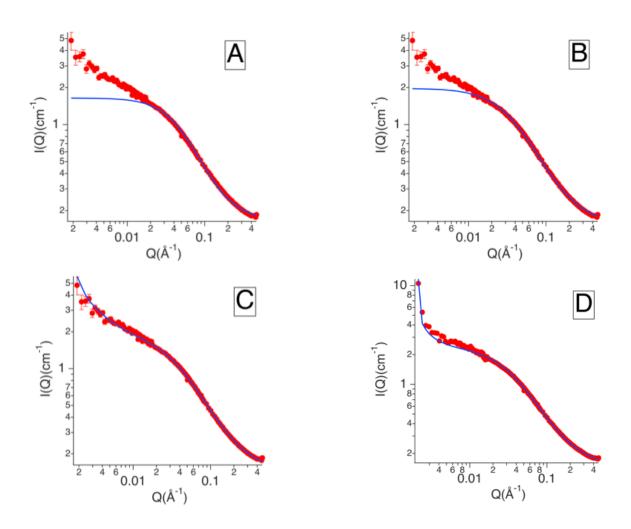



Figure S. 6: SANS curves of MG10P and MG10F measured at 50°C in a wide Q range. A Guinier analysis of the data yields the radius of gyration Rg at 50°C. The dashed line in the figure are the Guinier fits to the data. Solid lines are fits to the fuzzy sphere model. Results are given in Table 2 and 3 in section 4.4 of the paper. The inset shows the medium and high Q-range. For both samples, the intensity decreases in this range according to the Porod law, I \propto Q-4 until the incoherent background level is reached.

Figure S. 7: A: Ornsteir	Zernike fit with m=2, no	clustering term
--------------------------	--------------------------	-----------------

B: modified fit equation with m=1.7, according to Rubinstein and Colby for semi dilute polymers in good solvent C: correlation length fit with m=1.7 and a low Q exponent of $n=1.2\pm0.002$ indicating clustering within the PNIPAM solution as described by Hammouda et al. (J. Chem. Phys. 133, 084901 (2010))

-> low exponent, no scattering from an interface as in Porod scattering (1/q^4), but structural inhomogeneities in the semi dilute solution on larger length scales at low Q's

D: data at 20°C: correlation length fit with m=1.7 and a low Q exponent of n=2.0 + 0.01 indicating clustering within the PNIPAM solution as described by Hammouda et al. The scattering intensity seems to be increased compared to 15° C (10 vs. 5) and the clustering exponent is higher.

	А	В	С	D
m	2	1.7±0.001	1.7±0.001	1.7±0.001
n			1.2±0.002	2.1±0.01
ξ (nm)	2.1±0.03	2.7±0.03	2.4±0.02	2.9±0.01

Figure 7.A-C displays data at 15°C and Figure 7.D at 20°C. As described by Hore and Hammouda we also observe that the low-Q feature becomes steeper with increasing temperature.

However, for our purposes we are concerned with the intermediate and high-Q region, which give us information about the correlation length ξ . As can be seen in the table the values for ξ are similar independent of the chosen fit (between 2.1 and 2.9) with an average value of 2.5 nm and a standard deviation of 0.35 nm.

The exponent m=1.7 was used as suggested by Rubinstein and Colby for polymers in good solvent. (M. Rubinstein, R. H. Colby, *Polymer Physics*, Oxford University Press, New York, 2003, pp. 189-190.)

Since water is a good solvent for PNIPAM below the LCST of 32°C and we measured at 15°C and 20°C, this assumption is valid for our data.