PEGylated PNiPAM Microgels : Synthesis, Characterization and Colloidal Stability

Julien Es Sayed,^a Cédric Lorthioir,^b Patrick Perrin,^{a,*} and Nicolas Sanson^{a,*}

^a Soft Matter Sciences and Engineering, ESPCI Paris, PSL

University, Sorbonne Université, CNRS, F-75005 Paris.

^b Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris.

Fig S1 Reproducibility of the synthesis of microgel MG-0.25

Fig. S2 Diagram phases of (a) MG-0.1, (b) MG-0.25 and (c) MG-0.5 as a function of both the temperature and the CaCl₂ concentration in solution. The microgel concentration is $C_{MG} = 0.1$ wt%. The colors blue and red correspond to one and two phases respectively.

Fig. S3 (a) Temperature dependence of the area under the NMR peaks related to the NiPAM CH₃ (\approx) and CH (\approx) protons, measured for MG-1, at a concentration C_{MG} in D₂O of 0.05 wt %. (b) Variation of the fraction *f* of mobile NiPAM units, with the temperature. This fraction was derived using either the NMR peak assigned to the NiPAM CH₃ protons (**O**) or the one corresponding to the NiPAM CH proton (**O**). *f*₀ denotes the value of *f* at the lowest temperature investigated in this work (about 2 °C).

Fig. S4 ¹H transverse relaxation signal M(t) for the protons of the PEG side chains of MG-0.5 in D₂O (C_{MG} = 0.05 wt %), determined at 30 °C. The solid line corresponds to the fit of the experimental data.

Fig. S5 Evolution of the fraction f of mobile NiPAM (∞) and EG (\approx) units during the volume phase transition process of (a) MG-0.5, (b) MG-0.25, (c) MG-0.1 and (d) MG-0. f_0 is the value measured for f at the lowest temperature considered.