
Supplementary material: The interplay of activity and filament flexibility determines
the emergent properties of active nematics

Abhijeet Joshi, Elias Putzig, Aparna Baskaran, and Michael F. Hagan
Martin Fisher school of physics, Brandeis University, Waltham, MA 02453, USA

(Dated: October 28, 2018)

CONTENTS

S1. Simulation movies 1

S2. Analysis 1

S3. Additional figures on scaling of active nematic characteristics with κeff 2

S4. Estimating the individual filament persistence length 2

S5. Splay and bend deformations 3

S6. System size effects 4

S7. Density fluctuations 5

S8. Defect identification and shape measurement algorithm 6

References 8

S1. SIMULATION MOVIES

Animations of simulation trajectories (showing 1/16 of the simulation box) are provided for the following parameter
sets, with kb = 300 and τ1 = 0.2 in all cases:

• fa5 k500 t0p2.mp4: κeff = 20 : κ = 500, fa = 5

• fa5 k2500 t0p2.mp4: κeff = 100 : κ = 2500, fa = 5

• fa10 k200 t0p2.mp4: κeff = 2 : κ = 200, fa = 10

• fa10 k2500 t0p2.mp4: κeff = 25 : κ = 2500, fa = 10

• fa30 k10000 t0p2.mp4: κeff = 11 : κ = 104, fa = 30

In the videos, white arrows indicate positions and orientations of + 1
2 defects and white dots indicate positions of

− 1
2 defects. Filament beads are colored according to the orientations of the local tangent vector.

S2. ANALYSIS

To analyze our simulation trajectories within the framework of liquid crystal theory, we calculated the local nematic
tensor as Qαβ(rij) =

∑
k,|rk−rij |<5σ(t̂kαt̂kβ − 1

2δαβ) and the density field ρ on a 1000 × 1000 grid, where, rij is the

position of the grid point and rk and tk are the positions and tangent vectors of all segments. We then evaluated the
local nematic order parameter, S and director n̂ as the largest eigenvalue of Q and corresponding eigenvector. We
identified defects in the director field and their topological charges using the procedure described in section S8. To
compare the magnitudes of splay and bend deformations in our active systems to those that occur at equilibrium,
we calculated elastic constants of our system at equilibrium (fa = 0) using the free energy perturbation technique
proposed by Joshi et al. [1]. We performed these equilibrium calculations on a box of size 64× 64σ2.
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S3. ADDITIONAL FIGURES ON SCALING OF ACTIVE NEMATIC CHARACTERISTICS WITH κeff

We present data on defect density from the alternative data set in Fig. S1.
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FIG. S1. Number of defects as a function of κeff for the alternative dataset, with FENE bond strength kb = 30 and active
reversal period, τ1 = 1. Notice that we observe data collapse for all parameters with fa ≥ 5, but not for the lowest activity
fa = 2 (light blue symbols), when the system begins to lose nematic order (see Fig. S5c below) and the active force strength
becomes comparable to thermal forces.

S4. ESTIMATING THE INDIVIDUAL FILAMENT PERSISTENCE LENGTH

In this section we describe estimates of the effective persistence length measured from the tangent fluctuations of
individual filaments. We performed these measurements both on individual filaments within a bulk active nematic,
and isolated individual filaments to distinguish single-chain and multi-chain effects on the effective persistence length.

In a continuum limit, the total bending energy of a semiflexible filament it is well approximated by the wormlike
chain model [2],

Hbend =
κ̃

2

∫ L

0

(
dθ

ds

)2

ds (S1)

where the integration is over the filament contour length, L, parameterized by s, κ̃ is the continuum bending modulus,
and θ(s) is the tangent angle along the contour.

For a normal-mode analysis of the bending excitations we performed a Fourier decomposition of the tangential
angle θ(s) assuming general boundary conditions (since a filament in bulk need not be force-free at its ends):

θ(s) =
∑
q

(aq cos(qs) + bq cos(qs)) (S2)

where q = nπ/L (n = 1, 2, 3...) is the wave vector, with corresponding wavelength λ = π/q.

At equilibrium, using Eqs. (S1) and (S2) along with the equipartition theorem results in

〈a2
q + b2q〉 =

2kBT

κ̃Lq2
. (S3)

The modulus κ̃ can then be estimated from the slope of 〈a2
q + b2q〉 vs. q, as shown for an example parameter set in

Fig. S2, and the persistence length is given by lp = κ̃/kBT . Performing this procedure for our non-equilibrium system
as a function of κ and fa allows estimating the effective filament persistence length (Fig. 3 main text).
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FIG. S2. Fourier amplitudes 〈a2
q〉, 〈b2q〉 and 〈a2

q + b2q〉 as a function of wave vector qL/π, with L = bM the filament contour
length, measured in simulations of (a) bulk active nematics and (b) an isolated filament, for representative parameter values
(κ = 500,fa = 10;κeff = 5). Other parameters are τ1 = τ and kb = 30kBTref/σ

2.

S5. SPLAY AND BEND DEFORMATIONS

In a continuum description of a 2D nematic, all elastic deformations can be decomposed into bend and splay
modes, given by dbend(r) = (n̂(r)× (∇× n̂(r)) and dsplay(r) = (∇ · n̂(r)). Fig. S3 shows the spatial distribution of
bend and splay deformations in systems at low and high rigidity values. To avoid breakdown of these definitions
within defect cores or other vacant regions, we have normalized the deformations by the local density and nematic
order: Dbend = ρS2|dbend|2 and Dsplay = ρS2d2

splay. We see that bend and splay are equally spread out in the system
in the limit of low rigidity, whereas bend deformations are primarily located near defect cores for large rigidity. In
the high rigidity simulations, the effective persistence length (≈ 66σ) significantly exceeds the filament contour length
(20σ), and thus most bend deformations correspond to rotation of the director field around filament ends at a defect
tip.

To obtain further insight into the spatial organization of deformations, we calculated power spectra as P bend
k =∫

d2r′ exp (−ik · (r′)) 〈Dbend(r)Dbend(r + r′)〉, with an analogous definition for splay, and with the Q field calculated
at 1000 × 1000 grid points (a realspace gridspacing of 0.84σ). The resulting power spectra are shown in Fig. S4a,b
as functions of the renormalized filament rigidity, and the dependences of the peak positions and maximal power are
discussed in the main text. Here we note that the splay spectra exhibit asymptotic scaling of k5/3 and k−8/3 at scales
respectively above the defect spacing or below the size of individual filaments, with a plateau region at intermediate
scales. The same assymptotic scalings in power spectra were observed in dense bacterial suspensions in the turbulent
regime [3, 4].

The main text discusses the ratio of total strain energy in splay deformations to those in bend

R =

〈∫
d2rDsplay(r)

〉
/

〈∫
d2rDbend(r)

〉
. (S4)

We find that this ratio scales as R ∼ κ
1/2
eff for all parameter sets, which is different from the expected scaling in an

equilibrium nematic of Req ∼ κ2/3. To investigate the origins of this discrepency, we measured the elastic moduli
for an equilibrium system for different κ values shown in Fig. (S5). We find that the degree of order in the system
depends on the value of κ, that approximate scalings can be identified as k33 ∼ S4 and k11 ∼ S2 (Fig. (S5b)), and that
the amount of order in the system at a given stiffness value κeff is very different for active nematics when compared
to their equilibrium analogs (Fig. (S5c)). Active nematics have considerably higher order. We used this information
to empirically find that R/S2 exhibits approximately the same scaling for active and passive nematics.

Finally, by analogy to equipartition at equilibrium, the ratio of splay/bend, R, can be construed as an effective
ratio of moduli: keffective

33 /keffective
11 , with the ratio depending on activity. Fig. S6 shows the defect shape parameter

plotted as a function of this ratio.
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FIG. S3. Snapshots from steady state configurations at indicated parameter values, with colormaps showing the distribution
of bend, ρS2(n̂ × (∇ × n̂))2 (left), and splay, ρS2(∇ · n̂)2 (right), superposed on lines representing the director field. The
parameters are chosen to highlight differences between flexible (small κeff)and rigid (large κeff) systems. The color range is
clipped at 0.01 to to clarify the spatial variations of the deformations. Other parameters are τ1 = 0.2τ and kb = 300kBTref/σ

2.

S6. SYSTEM SIZE EFFECTS

To assess finite size effects on our results, we performed a system size analysis for two parameter sets from Fig. S1:
κ = 200, fa = 5 and κ = 2500, fa = 5, with τ1 = τ and kb = 30. We chose these parameter sets because they are near
the upper and lower limits of effective bending rigidity investigated in that set of simulations. As shown in Fig. S7,
we observe no systematic dependence of defect density on system size over the range of side lengths L ∈ [200, 1200]σ.
We observe a similar lack of dependence on system size for other observables, suggesting that finite size effects are
negligible in our simulations at system size (840× 840σ2).
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FIG. S4. Power spectrum of splay (a) and bend (b) deformations as a function of wavenumber k, with the colorbar indicating
the value of effective bending rigidity (κeff). Other parameters are τ1 = 0.2τ and kb = 300kBTref/σ
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FIG. S5. Comparison of ratio of bend and splay deformations in an active nematic to an equilibrium system. (a) The ratio
of splay and bend deformations, R, plotted as a function of renormalized bending rigidity for active and equilibrium systems.
The ratio R calculated in equilibrium systems is shown as H symbols, while the symbols for the active system are defined as
in Fig. S1. (b) The data from (a) is shown normalized by the mean nematic order parameter squared, (R/S2). (c) The mean
nematic order parameter, S, as a function of renormalized bending rigidity measured in active and equilibrium simulations.
(d) Values of the bend (k33) and splay (k11) elastic constants as a function of κ calculated using free energy perturbation [1] in
equilibrium simulations (fa = 0). (e) The same results as in (d), plotted against the nematic order parameter S calculated for
each parameter value. The red and blue lines indicate scaling of ∼ S4 and ∼ S2. The active results in this figure correspond
to the additional data set with kb = 30 and τ1 = 1, as in Fig. S1.

S7. DENSITY FLUCTUATIONS

It is well-known that active nematics are susceptible to phase separation [5–8] and giant number fluctuations (GNFs)
[5, 9–12]. We therefore monitored these quantities in our system. Interestingly, while we do observe large density
fluctuations on small scales (see videos of typical trajectories), phase separation is suppressed on large scales in the
semiflexible regime. Fig. S8 shows histograms of local density, measured within subsystems with side length 10σ as
a function of κ. We see that the distribution of local densities broadens as fa and κ increase, but remains unimodal
indicating an absence of true phase separation.

Fig. S9 shows measured number fluctuations for different values of the effective bending modulus, plotted as
∆N/

√
N , so that the result will be constant with subsystem size for a system exhibiting equilibrium-like fluctuations.
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FIG. S6. Defect shape parameter b1 as a function of splay/bend ratio R defined in the text, for the data in Fig. 3b,c of the
main text.
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FIG. S7. Steady-state defect density as a function of simulation box side length L for square boxes with periodic boundary
conditions, at indicated values of the filament modulus and activity parameter, with τ1 = τ and kb = 30kBTref.

S8. DEFECT IDENTIFICATION AND SHAPE MEASUREMENT ALGORITHM

Here, we provide details on how we identify and measure the shapes of defects from our simulation data. This
algorithm can also be directly applied to retardance images from experimental systems, and discretized output from
continuum simulations.

Locating and identifying defects: We locate defects using the fact the magnitude of nematic order S is very small

at defect cores. We first compute the magnitude S = 2
√
Q2
xx +Q2

xy from the nematic tensor, whose measurement

was described above. The regions corresponding to defect cores can then be extracted by using a flood-fill algorithm
to select connected areas where the order is below some threshold Sthreshold. We set Sthreshold = 0.6 since the system
is deep within the nematic state for the parameters of this study. Once the defect cores have been located, the charge
of each defect can be identified from the total change in the orientation of the director in a loop around the defect
core. We perform this calculation by adding the change in angle for points in a circle about the center of the core.
We choose the radius of the circle to be at least 5σ, to ensure a well defined director field. The total change in angle
must be a multiple of π: ∆θ = nπ, where if n = 0 then the disordered region is not a defect, and otherwise it is a
defect with topological charge m = n

2 . Typically n = ±1 but, in rare cases we observed defects with charge m = +1
in our simulation data.

Identifying the orientations and characterizing the shapes of + 1
2 defects: Given the location of a defect and its
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rigidity (right). Local densities were calculated by measuring the number of filament beads within square subsystems with
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tuations are normalized by their value at equilibrium, ∆N/
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Other parameters are τ1 = 0.2τ and kb = 300kBTref/σ
2.

charge, there are several methods which can be used to measure the orientation of the + 1
2 defects [13, 14]. In

this work, we compute the sum of the divergence of Q field, ∇βQαβ along a circle enclosing the defect, and normalize
it to a give unit vector. This unit vector represents the orientation of the +1/2 defect and in our two dimensional
system identifies an angle θ′0 for the defect.

We then measure the director orientation θ̄(φ̄) along the azimuthal angle φ̄ at discrete set of radii, {r}, around the
defect core (see Fig. 5A main text). First, we ensure that each loop does not cross any disordered regions, or enclose
any other defects, by checking the order at each point and summing ∆θ over the loop. Then we apply a coordinate
frame rotation such that θ = θ̄−θ′0, and the azimuthal angle φ = φ̄−θ′0, where, θ′0 is an orientation of the +1/2 defect
estimated above. This step rotates the coordinate frame of reference to the frame of reference of the +1/2 defect.
Finally, we evaluate the Fourier coefficients for θ(φ),

θ(r, φ) = +
1

2
φ+

∑
n

an(r) cos(nφ) + bn(r) sin(nφ). (S5)

However, in practice we find that truncating the expansion after the first sin term gives an excellent approximation of
the shape of a + 1

2 defect. Hence, once a value of r is chosen, the defect can be characterized by the single parameter
b1.

In Fig. S10 we show the distribution of b1 values obtained from our simulations with r = 12.6σ. Note that we
observe long tailed distributions of b1 with tails in the b1 < 0 regime. However, the distributions are sharply peaked
with typical peak width ∼ 0.1. Therefore we consider the mode of b1 values as an appropriate measure of defect
shape.
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2, with

parameterizations calculated at a distance r = 12.6σ from the center of each defect according to Eq. (S5). (right) Effect of
varying r (the distance from the center of the +1/2 defect core) on the defect shape parameter b1. The mode of b1 is shown as
a function of κeff for the simulations in Fig. 3 (main text), with indicated values of r.

Choice of r: For an isolated defect, b1 asymptotes once the distance from the defect center increases beyond the
core size. However, as noted in Zhou et al. [15], in a system with finite defect density the defect shape should be
parameterized as close to the defect center as possible to avoid distortion due to other defects. The typical defect
core radius in our simulations (defined as the region in which the nematic order parameter S < 0.6) is about 4σ.
The smallest defect spacing (at the highest defect density) in our simulations is about 40σ. We therefore chose a
radius r = 12.6σ, where the nematic is highly ordered and the director is always well-defined, but distortions due
to other defects are minimized. As shown in Fig. S10 (right) the results are qualitatively insensitive to radius for
r > 5, although statistics become more limited for larger r. For consistency, the same radius should be chosen for all
systems.

Breakdown at high fa and κ: As noted in the main text, the defect identification algorithm breaks down in systems
with both extremely high activity and high bare bending rigidity (fa ≥ 20 and κ & 5000). Under these conditions the
system exhibits density fluctuations on very short length scales (see Fig. S8 and the movie showing snapshots from
a simulation trajectory with fa = 30 and κ = 104). The defect algorithm cannot distinguish between configurations
in which stiff rods trans-pierced these holes and actual defects. Therefore we have not measured defect densities for
these parameter sets.
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