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In this material, some experimental and simulation details are laid out. For simulations, a flow 

chart laying out the steps to predict the linear rheological G’ and G” curves is presented followed 

by a complete description of the optimization procedure and sensitivity studies for parameter 

estimation. For the experiments, the method of combining the macro- and micro- rheological data 

is elaborated. Finally, the self-recombination associated expressions for the ratio  of micelle 𝜍𝐷𝐶

diffusion time to recombination time for both entangled and unentangled regimes are also derived 

in detail.

Simulation procedure. As we discussed briefly in the main text, the specific types of relaxation 

dynamics a micelle undergoes are strongly affected by its length. According to Table 1, due to the 

exponential length distribution, micelles in a sufficiently large ensemble can be classified into 
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three subpopulations, namely, very short unentangled micelle rods ( ), unentangled short, but 𝐿𝑖 ≤ 𝑙𝑝

flexible WLMs ( ), and entangled long WLMs ( ). The micelles in the former two 𝑙𝑝 < 𝐿𝑖 < 𝑙𝑒 𝐿𝑖 ≥ 𝑙𝑒

groups relax quickly through rotary, Rouse, and bending motions, whose contributions are only 

significant at high frequencies. To simulate these dynamics explicitly would require lengthy and 

costly computations, and would require time steps too short to allow runs long enough to account 

for the much slower reptation of those long entangled WLMs. Therefore, the dynamics of these 

relatively short micelles are treated analytically (See Eq. 1, and 2) and the results are added directly 

to the predicted G’ and G” curves at the end of each simulation.   

For partially entangled WLMs, the ensemble is thus divided into entangled and unentangled 

micelles. For the entangled micelles, pointers are assigned to track the loss of tube segments in the 

same way as for the well-entangled system.32,33 For the unentangled short micelles, however, no 

pointers are needed, and the micelles are treated as relaxed during the entire simulation (although 

the contributions from high-frequency Rouse and bending modes from these micelles are included 

after the simulation finishes, just as is done for entangled micelles). The unentangled micelles do 

participate in micelle breakage and re-formation, adding their relaxed lengths to each other and to 

entangled micelles by fusion. Finally, the unrelaxed tube fraction  is calculated through 𝜇(𝑡)

summing unrelaxed tube segments between neighboring pointers, and converted into the stress 

relaxation function , where the square takes into account for the effect of tube rearrangement. 𝜇2(𝑡)

 This is then transformed into G’ and G” curves accounting for the low and moderate frequency 

behavior contributed by the entangled WLM subpopulations.32,33 The high frequency rotary and 

bending mode contributions are then added for the unentangled micelles shorter than one 
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persistence length, and these modes plus Rouse modes are added for untangled micelles longer 

than a persistence length. The local Rouse and bending modes are also added for the entangled 

micelles. The above simulation scheme is illustrated in the following flow chart:     

      

Figure S1. Simulation flow chart for predicting linear rheological behavior of a solution 

containing both entangled and unentangled micelles.

Merging data from mechanical rheology and DWS. When combining the high-frequency 

rheological data from DWS with the lower-frequency data from mechanical rheometry, ideally, 

the two sets of data should overlap at intermediate frequencies (10~100 rad/s). However, 

pronounced discrepancies are almost always found for WLM solutions at high surfactant or salt 

concentrations.33 It is now well accepted that the micro-rheology over- or underestimates the 

elastic modulus due to slip and the compression of fluid at the interface between particle probe 

and viscoelastic medium as well as the formation of particle-micelle aggregates.27,48 As a 

consequence, to merge DWS data with the mechanical data requires that the magnitudes of G’ and 

G” from DWS be shifted by a factor that depends on the specific frequency range over which the 
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two data sets overlap. The following procedure is therefore used to obtain the combined G’ and 

G” curves: As shown in Fig. S2, we first remove mechanical rheometric data outside of a frequency 

window of 0.5-100 rad/s since outside of this range the data are subject either to the effect of inertia 

(at high frequency) or to low signal-to-noise ratio (at low frequency, where G’<< G”). 

Analogously, truncation of DWS data is carried out at low (<10 rad/s) and high frequency (>20000 

rad/s) due to the poorly resolved terminal behavior of DWS data at low frequencies and the 

limitation of Brownian motions of probe particles at high frequencies, respectively.  The remaining 

DWS data is then shifted vertically to allow for the best overlap with those from mechanical 

rheometry at frequencies between 50 to 150 rad/s.   
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Figure S2. Illustration of the data merging process to combine mechanical rheometric and DWS 

data.

Parameter optimization. As illustrated by Fig. 2 in the main text, only weak elasticity with 

negligible effect of breakage and re-formation are exhibited for partially entangled WLM 

solutions. This leads to low-frequency relaxation behavior that deviates from a single Maxwell 

model as well as an ill-defined plateau regime at intermediate frequencies, resulting in the 

disappearance of the local maximum and minimum in G” or, equivalently, of the “dip” in the Cole-

Cole plot (i.e., a plot of G” vs G’). Thus, instead of using those local rheological features to fit 

parameters as we have done for well entangled micelles, we now divide the overall frequency 

range in a more general way as shown by Fig. S3. 

Figure S3. The division of linear rheological G’ and G” data into multiple frequency regions for 

partially entangled WLM solutions. Here  is the geometric mean of the two 𝜔𝑚𝑖𝑑 = 𝜔1𝑐𝜔2𝑐

crossovers frequencies with  being the corresponding magnitudes of G’ and G” at this 𝐺'𝑚𝑖𝑑,𝐺"𝑚𝑖𝑑
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mean frequency, while  and  are the frequencies corresponding to the first and last data point 𝜔1 𝜔𝑁

in the data set, respectively. 

In the above figure, the fitting deviations are defined as 

𝜀𝑗 =
1

𝑁𝑗
∑{𝑤1𝑙𝑜𝑔[ 𝐺'

𝑓𝑖𝑡(𝜔𝑖)

𝐺'
𝑒𝑥𝑝(𝜔𝑖)] + 𝑤2𝑙𝑜𝑔[ 𝐺"𝑓𝑖𝑡(𝜔𝑖)

𝐺"𝑒𝑥𝑝(𝜔𝑖)]}                              (𝑆1)

where  is the number of data points in region , and the subscripts “ ” and “ ” represent the 𝑁𝑗 𝑗 𝑓𝑖𝑡 𝑒𝑥𝑝

simulated and the experimentally measured data, respectively. The  are weight factors, which  𝑤1,2

we set to , except for partially unentangled solutions at frequencies below the low-𝑤1 = 𝑤2 = 1

frequency crossover of G’ and G” curves where we set  due to the weak signal of 𝑤2 = 1.5 ,  𝑤1 = 0.5

G’ at low frequencies. The “log” is a base-10 logarithm. The summation in Eq. S1 is over all data 

points in region .  Note that the sign of  is retained to allow for micellar parameters to be adjusted 𝑗 𝜀𝑗

either upward or downward. After determining  at the end of each iteration, the micellar 𝜀𝑗

parameters for generating G’ and G” curves during the next iteration are updated with the 

following empirical correlations:

{𝑤𝑒𝑙𝑙 𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑: �̅�𝑘 + 1 = �̅�𝑘(𝐺'𝑒𝑥𝑝
𝑚𝑖𝑑

𝐺"𝑒𝑥𝑝
𝑚𝑖𝑑

𝐺" 𝑘
𝑚𝑖𝑑

𝐺' 𝑘
𝑚𝑖𝑑

)                                  

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑: �̅�𝑘 + 1 = (�̅�𝑘 ‒ �̅�𝑐)(𝜔𝑒𝑥𝑝
𝑚𝑖𝑑

𝜔𝑒𝑥𝑝
1𝑐

𝜔𝑘,𝑓𝑖𝑡
1𝑐

𝜔𝑘,𝑓𝑖𝑡
𝑚𝑖𝑑

)0.4 + �̅�𝑐�            (𝑆2𝑎)

𝐺𝑘 + 1
𝑁 = 𝐺𝑘

𝑁( 𝐺"𝑒𝑥𝑝
1𝑐

𝐺"𝑘,𝑓𝑖𝑡
1𝑐

)                                                         (𝑆2𝑏)

𝑙𝑘 + 1
𝑝 = 𝑙𝑘

𝑝 3 𝜔𝑘,𝑓𝑖𝑡
𝑚𝑖𝑑 𝜔𝑒𝑥𝑝

𝑚𝑖𝑑                                                  (𝑆2𝑐)
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𝜍𝑘 + 1 = 𝜍𝑘[𝜔𝑘,𝑓𝑖𝑡
1𝑐

𝜔𝑒𝑥𝑝
1𝑐

( 𝑙𝑘
𝑝

𝑙𝑘 + 1
𝑝

�̅�𝑘

�̅�𝑘 + 1)3]1.5                                  (𝑆2𝑑)

Note that the definitions of  can be found in Fig. S3. This scheme for 𝜔1𝑐, 𝐺'1𝑐,𝐺"1𝑐,𝜔𝑚𝑖𝑑,𝐺'𝑚𝑖𝑑,𝐺"𝑚𝑖𝑑

updating parameters is adapted from our previous work, where it was found to lead to rapid 

convergence, which is needed since each iteration of the fitting procedure requires a simulation 

using the Pointer Algorithm. 

Figure S4. Flow chart of the parameter optimization procedure.

Here,  is iteration number. Details regarding these empirical formulas can be found in the main 𝑘

text and references.32,33 The optimization process is summarized in Fig. S4. After each simulation, 
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the fitting deviations  as well as local rheological features are obtained with model parameters 𝜀𝑗

updated according to Eq. S2. Different optimization paths are chosen on the basis of whether the 

solution is partially or well entangled. The iteration eventually stops once a best-fit to experimental 

data is achieved. Since an appropriate correction of a particular micelle parameter depends on both 

the sensitivity and the correlation to the other parameters, some parameters will not be optimized 

as many times as the others over the entire iterations: for example,  will be modified only if 𝑙𝑝

specific criteria are fulfilled signaling the necessity of changing this parameter for a better fit to 

experimental data. Thus, with the above procedure, the following best-fits to rheometric data of 

WLM solutions with [Na+]= 0.651 M, 0.701 M, 0.751 M, and 0.800 M total cation concentration 

are obtained as shown in Fig. S5. Note in the flow chart that only the errors in regions 1 and 2 are 

used to assess final convergence, while local features of the G’ and G’’ curves, i.e., 

 (See Fig. S3), are used to assess convergence in regions 3 and 4.𝜔𝑚𝑖𝑑,𝐺'𝑚𝑖𝑑,𝐺"𝑚𝑖𝑑
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Figure S5. Linear rheological measurements with the corresponding best-fits from simulations for 

(1.5 wt. % SLE1S+CAPB) micelle solutions at 25 C with different [Na+] which includes 

contributions from both the counterion for the surfactant and from the added salt: (a) [Na+]=0.651 

M; (b) [Na+]=0.701 M; (c) [Na+]=0.751 M; (d) [Na+]=0.800 M. Note that the poor fits at high 

frequencies do not affect the determination of micelle parameters as long as the high-frequency 

crossover frequencies are well-matched between the experiment and the simulations, as explained 

in the discussion of Fig. 5b in the main text. 

Sensitivity studies. Although our parameter optimization procedure shows good accuracy and 

robustness in estimating micellar properties with less than 10% average fitting errors for the local 
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rheological features (i.e., cross-over frequencies with their associated modulus,  and 𝜔1𝑐, 𝐺"1𝑐,𝜔2𝑐

the corresponding midpoints between them ), as well for the G’ and G” curves 𝜔𝑚𝑖𝑑, 𝐺'𝑚𝑖𝑑,𝐺"𝑚𝑖𝑑

themselves at low and intermediate frequencies, and for the predicated vs. experimental viscosities 

(see Fig. S5 for the detailed convergence criteria), some uncertainties in the obtained values of 

parameters occur as shown by the insensitivity percentage in the main text (See Table 3). Below, 

the results of sensitivity studies for parameters , including estimates of parameters 𝐺𝑁,  𝜍,  �̅�,  〈𝐿〉,  𝑙𝑒

and their corresponding fits with/without fixed , are tabulated. 𝑙𝑝
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Table S1. Sensitivity study of . Parameter values obtained by best fitting rheological data with �̅�

unconstrained , with  held at the imposed values of  that vary according to the given 𝑙𝑝 �̅� �̅�

percentages from the unconstrained best-fit value, with the corresponding fits of rheological data 

shown in Fig. S6a.

Parameters 95% �̅� 97% �̅� 99% �̅� Best-fit 103% �̅� 107% �̅� 113% �̅�

�̅� 2.66 2.72 2.79 2.83 2.91 3.00 3.16
𝑙𝑒 (𝑛𝑚) 406 482 420 403 395 363 376
𝑙𝑝 (𝑛𝑚) 30.1 24 28.6 30.1 30.1 35.7 36.8

𝜍 170 193 161 178 119 22 6
𝐺𝑁 (𝑃𝑎 ∙ 𝑠) 13.6 13.07 13.6 13.77 14.30 13.61 12.32
〈𝐿〉 (𝜇𝑚) 1.08 1.31 1.17 1.14 1.15 1.09 1.19
𝜀𝑚𝑎𝑥 (%) > 10 < 10 < 10 - ~ 10 ~ 10 ~ 10

Note that  is the maximum absolute deviation of  the seven fitting errors; these seven are the 𝜀𝑚𝑎𝑥

average absolute fitting deviations within the low and intermediate ranges of frequencies,  and 𝜀1

, the differences in local rheological features , , and , as well as in the error 𝜀2 ∆𝜔1𝑐 ∆𝐺'1𝑐, ∆𝐺"1𝑐 ∆𝜔𝑚𝑖𝑑

in predicted solution viscosity . (See Fig. S4 for definitions of these fitting deviations/errors). ∆𝜂0

By varying  from its unconstrained best-fit value, the insensitivity percentage for  is determined �̅� �̅�

by the variation in  for which  first achieves 10%. �̅� 𝜀𝑚𝑎𝑥

Table S2. The same as Table S1, except for the sensitivity of  at the imposed values listed in the 𝑙𝑒

top row; the corresponding fits are shown in Fig. S6b. 

Parameters 50% 𝑙𝑒 75% 𝑙𝑒 90% 𝑙𝑒 Best-fit 115% 𝑙𝑒 130% 𝑙𝑒 160% 𝑙𝑒

�̅� 3.00 2.88 2.85 2.83 2.83 2.75 2.62
𝑙𝑒 (𝑛𝑚) 213 302 362 403 463 524 645
𝑙𝑝 (𝑛𝑚) 70.5 39.8 33.2 30.1 25.5 21.2 15.0

𝜍 54 171 167 178 196 170 67
𝐺𝑁 (𝑃𝑎 ∙ 𝑠) 17.24 16.66 14.86 13.77 13.11 13.11 13.63
〈𝐿〉 (𝜇𝑚) 0.64 0.87 1.03 1.14 1.31 1.44 1.69
𝜀𝑚𝑎𝑥 (%) >> 10 > 10 ~ 10 - < 10 < 10 < 10
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Table S3. The same as Table S1, except for the sensitivity of  at the given imposed values; the 𝑙𝑝

corresponding fits are shown in Fig. S6c. 

Parameters 50% 𝑙𝑝 70% 𝑙𝑝 90% 𝑙𝑝 Best-fit 110% 𝑙𝑝 130% 𝑙𝑝

�̅� 2.62 2.74 2.78 2.83 2.80 2.88
𝑙𝑒 (𝑛𝑚) 645 508 421 403 372 316
𝑙𝑝 (𝑛𝑚) 15 21.1 27.1 30.1 33.1 39.2

𝜍 67.3 102 120 178 142 140
𝐺𝑁 (𝑃𝑎 ∙ 𝑠) 13.63 13.94 14.43 13.77 14.23 15.59
〈𝐿〉 (𝜇𝑚) 1.69 1.39 1.17 1.14 1.04 0.91
𝜀𝑚𝑎𝑥 (%) < 10 < 10 < 10 - ~ 10 > 10

Table S4. The same as Table S1, except for sensitivity of  at the given values; the corresponding 𝜍

fits are shown in Fig. S6d. 

Parameters /64𝜍 /16𝜍 /4𝜍 Best-fit 2𝜍 4𝜍 8𝜍

�̅� 3.26 2.99 2.85 2.83 2.80 2.81 2.79
𝑙𝑒 (𝑛𝑚) 497 451 410 403 418 413 405
𝑙𝑝 (𝑛𝑚) 24.8 28.2 29.5 30.1 29.1 29.6 29.3

𝜍 2.5 10 40 178 320 640 1280
𝐺𝑁 (𝑃𝑎 ∙ 𝑠) 10.3 12.15 13.72 13.77 13.44 13.5 14.13
〈𝐿〉 (𝜇𝑚) 1.62 1.35 1.17 1.14 1.17 1.16 1.13
𝜀𝑚𝑎𝑥 (%) >> 10 > 10 < 10 - < 10 < 10 < 10

Table S5. The same as Table S1, except for sensitivity of  at the given values; the corresponding 𝐺𝑁

fits are shown in Fig. S6e. 

Parameters 75% 𝐺𝑁 85% 𝐺𝑁 95% 𝐺𝑁 Best-fit 105% 𝐺𝑁 110% 𝐺𝑁 120% 𝐺𝑁

�̅� 2.80 2.87 2.83 2.83 2.81 2.82 2.82
𝑙𝑒 (𝑛𝑚) 162 171 155 178 137 173 203
𝑙𝑝 (𝑛𝑚) 539 449 441 403 391 383 333

𝜍 24.8 29.3 27.5 30.1 30.4 30.1 34.4
𝐺𝑁 (𝑃𝑎 ∙ 𝑠) 10.32 11.7 13.08 13.77 14.45 15.14 16.52
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〈𝐿〉 (𝜇𝑚) 1.51 1.29 1.25 1.14 1.1 1.08 0.94
𝜀𝑚𝑎𝑥 (%) > 10 ~ 10 < 10 - < 10 ~ 10 > 10
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Figure S6. Fitting results showing sensitivity of best fits to imposed value of (a) ; (b) ; (c) ; �̅� 𝑙𝑒 𝑙𝑝

(d) ; (e) ; (f)  for partially entangled WLM solution with corresponding fitting parameters 𝜍 𝐺𝑁 〈𝐿〉

given in Table S1-6.

Table S6. The same as Table S1, except for sensitivity of  at the given values; the corresponding 〈𝐿〉

fits are shown in Fig. S6f. 

Parameters 80% 〈𝐿〉 90% 〈𝐿〉 Best-fit 102% 〈𝐿〉 105% 〈𝐿〉 110% 〈𝐿〉

�̅� 2.87 3.07 2.83 3.11 2.80 2.56
𝑙𝑒 (𝑛𝑚) 318 336 403 373 429 488
𝑙𝑝 (𝑛𝑚) 45.2 41.3 30.1 34.5 29.6 27.9

𝜍 65.3 14.2 178 10.5 25.6 24.8
𝐺𝑁 (𝑃𝑎 ∙ 𝑠) 15.69 13.14 13.77 13.44 12.59 10.74
〈𝐿〉 (𝜇𝑚) 0.912 1.03 1.14 1.16 1.20 1.25
𝜀𝑚𝑎𝑥 (%) ~ 10 < 10 - < 10 ~ 10 > 10

Table S7. Parameter values obtained by best fitting rheological data with fixed = 32 nm, for 𝑙𝑝

sensitivity study of  at the given values; the corresponding fits shown in Fig. S7a. �̅�

Parameters 95% �̅� 97% �̅� 99% �̅� Best-fit 101% �̅� 103% �̅� 107% �̅�

�̅� 2.67 2.73 2.79 2.83 2.83 2.90 3.02
𝑙𝑒 (𝑛𝑚) 409 400 391 403 399 379 377

𝜍 190 280 178 178 186 68.2 58.3
𝐺𝑁 (𝑃𝑎 ∙ 𝑠) 12.5 13 13.6 13.77 13.1 14.3 14.5
〈𝐿〉 (𝜇𝑚) 1.09 1.09 1.09 1.14 1.13 1.1 1.14
𝜀𝑚𝑎𝑥 (%) ~ 10 < 10 < 10 - < 10 ~ 10 > 10

Table S8. The same as Table S7, except for sensitivity study of  at given values; the 𝑙𝑒

corresponding fits are shown in Fig. S7b. 

Parameters 85% 𝑙𝑒 90% 𝑙𝑒 95% 𝑙𝑒 Best-fit 102% 𝑙𝑒 105% 𝑙𝑒 110% 𝑙𝑒
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�̅� 2.84 2.85 2.85 2.83 2.76 2.91 2.82
𝑙𝑒 (𝑛𝑚) 343 362 382 403 410 422 444

𝜍 311 210 149 178 100 162 112
𝐺𝑁 (𝑃𝑎 ∙ 𝑠) 17.2 15.5 14.1 13.77 14.13 11.8 10.8
〈𝐿〉 (𝜇𝑚) 0.975 1.03 1.09 1.14 1.13 1.23 1.25
𝜀𝑚𝑎𝑥 (%) > 10 > 10 ~ 10 - < 10 ~ 10 > 10

Table S9. The same as Table S7, except for sensitivity study of  at given values; the corresponding 𝜍

fits are shown in Fig. S7c. 

Parameters /64𝜍 /16𝜍 /4𝜍 Best-fit 2𝜍 4𝜍 8𝜍

�̅� 3.27 3.03 2.88 2.83 2.77 2.81 2.84
𝑙𝑒 (𝑛𝑚) 455 419 389 403 379 384 395

𝜍 2.5 9 35 178 280 560 1120
𝐺𝑁 (𝑃𝑎 ∙ 𝑠) 10.33 11.95 13.65 13.77 14.32 14.01 13.29
〈𝐿〉 (𝜇𝑚) 1.49 1.27 1.12 1.14 1.05 1.08 1.12
𝜀𝑚𝑎𝑥 (%) >> 10 > 10 ~ 10 - < 10 < 10 < 10

Table S10. The same as Table S7, except for sensitivity study of  at given values; the 𝐺𝑁

corresponding fits are shown in Fig. S7d. 

Parameters 85% 𝐺𝑁 90% 𝐺𝑁 95% 𝐺𝑁 Best-fit 105% 𝐺𝑁 110% 𝐺𝑁 115% 𝐺𝑁

�̅� 2.88 2.87 2.86 2.83 2.81 2.81 2.76
𝑙𝑒 (𝑛𝑚) 424 411 399 403 377 367 359

𝜍 170 32.3 88.2 178 175 157 173
𝐺𝑁 (𝑃𝑎 ∙ 𝑠) 11.7 12.4 13.1 13.77 14.5 15.1 15.8
〈𝐿〉 (𝜇𝑚) 1.22 1.18 1.14 1.14 1.06 1.03 0.991
𝜀𝑚𝑎𝑥 (%) ~ 10 < 10 < 10 - ~ 10 ~ 10 > 10
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Figure S7. Fitting results showing sensitivity of best fits to imposed value of (a) ; (b) ; (c) ; (d) �̅� 𝑙𝑒  𝜍

; (e)  for partially entangled WLM solution with corresponding fitting parameters given in 𝐺𝑁 〈𝐿〉

Table S7-11.
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Table S11. The same as Table S7, except for sensitivity study of  at given values; the 〈𝐿〉

corresponding fits are shown in Fig. S7e. 

Parameters 85% 〈𝐿〉 90% 〈𝐿〉 95% 〈𝐿〉 Best-fit 105% 〈𝐿〉 110% 〈𝐿〉 115% 〈𝐿〉

�̅� 2.85 2.62 2.87 2.83 2.98 3.01 3.05
𝑙𝑒 (𝑛𝑚) 339 389 376 403 400 415 430

𝜍 589 749 15.2 178 14.3 13.6 7.05
𝐺𝑁 (𝑃𝑎 ∙ 𝑠) 17.5 13.7 14.5 13.77 13 12.2 11.4
〈𝐿〉 (𝜇𝑚) 0.965 1.02 1.08 1.14 1.19 1.25 1.31
𝜀𝑚𝑎𝑥 (%) > 10 ~ 10 ~ 10 - < 10 < 10 ~ 10

Detailed Expressions for . According to O’Shaughnessy and Yu,63 after a breakage event (at 𝜍𝐷𝐶

) the recombination probability would approach unity at , i.e., the average time for two 𝑡 = 0 𝑡 = �̅�𝑟𝑒𝑐

newly created micelle ends to recombine is: 

�̅�𝑟𝑒𝑐

∫
0

𝑑𝑡 ∙
𝑘𝑟𝑒𝑐𝑏3

𝑥(𝑡)3
≈

�̅�𝑟𝑒𝑐𝑘𝑟𝑒𝑐𝑏3

𝑥(�̅�𝑟𝑒𝑐)3
≅1                                      (𝑆3)

Here  is the recombination rate of two overlapping micelle ends of size , and  is the root 𝑘𝑟𝑒𝑐 𝑏 𝑥(𝑡)

mean square displacement of a micelle end after time . We can take  both for unentangled 𝑡 𝑥(𝑡)~𝑡1/2

micelle rods due to translational diffusion and for entangled WLMs at late times due to center of 

mass diffusion when micelles can escape from their original tubes, while, following 

O’Shaughnessy and Yu, we obtain  for entangled WLMs as a result of reptation in the 𝑥(𝑡)~𝑡1/4

tube (which is itself a random walk in space) at early times. Since at equilibrium, the overall 

recombination rate should equal the breakage rate, therefore:

𝑘𝑟𝑒𝑐𝑏3𝑐 2
𝑒𝑛𝑑 = 𝑐𝑒𝑛𝑑/�̅�𝑏𝑟                                                 (𝑆4)

where   is the density of micelle ends, and 𝑐𝑒𝑛𝑑 ≡ 1/〈ℎ〉3
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〈ℎ〉 ≡ 3 〈𝐿〉𝜋𝑑2

(8𝜙)
                                                              (𝑆5)

 is defined as the average distance between any two micelle ends. Given =1.51% and =4 〈ℎ〉 𝜙 𝑑

nm, for the two entangled WLM solutions considered in the main text, i.e., [Na+]=0.601 M 

(partially entangled with =1.14 μm, see Fig. 7b) and [Na+]=0.852 M (well entangled with 〈𝐿〉

=5.90 μm, see Fig. 7b),  equals 78 nm and 135 nm, respectively. For the two unentangled 〈𝐿〉 〈ℎ〉

solutions ( =0.20%), i.e., [Na+]=0.586 M ( =488 nm, see Fig. 7b) and [Na+]=0.983 M ( =3.10 𝜙 〈𝐿〉 〈𝐿〉

μm, see Fig. 7b),  equals 115 nm and 214 nm, respectively. Since  is related to  through 〈ℎ〉 �̅�𝑟𝑒𝑐 𝑥(�̅�𝑟𝑒𝑐)

either reptation (for entangled solutions at early times), center of mass diffusion (for entangled 

solutions at late times), or translational diffusion (for unentangled solutions), 

𝑥(�̅�𝑟𝑒𝑐)2~{ 𝑎〈𝐿𝑡〉 ∙ (�̅�𝑟𝑒𝑐/�̅�𝑟𝑒𝑝)0.5       𝑏𝑦 𝑟𝑒𝑝𝑡𝑎𝑡𝑖𝑜𝑛                           (𝑆6𝑎)
    �̅�𝑟𝑒𝑐 ∙ 𝐷𝐺     𝑏𝑦 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛                    (𝑆6𝑏)
     �̅�𝑟𝑒𝑐 ∙ 𝐷𝑡       𝑏𝑦 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛                     (𝑆6𝑐)�

With

𝐷𝑐 =
𝑘𝐵𝑇 ∙ 𝑙𝑛(𝑙3/5

𝑒 𝑙2/5
𝑝 /𝑑)

2𝜋𝜂𝑠〈𝐿〉
;  𝐷𝐺 =

𝐷𝑐

3�̅�
;  𝐷𝑡 =

𝑘𝐵𝑇 ∙ 𝑙𝑛(〈𝐿〉/𝑑)

2𝜋𝜂𝑠〈𝐿〉
                  (𝑆7)

Here, , , and  are curvilinear, center of mass, and translational diffusivity (of a short 𝐷𝑐 𝐷𝐺 𝐷𝑡

cylindrical micelle), respectively, for a micelle with average length .  is the solvent viscosity. 〈𝐿〉 𝜂𝑠

 ( ) is the reptation time, while  and  ( ) are the tube length and tube �̅�𝑟𝑒𝑝 = 〈𝐿𝑡〉2/𝜋2𝐷𝑐 〈𝐿𝑡〉 𝑎 = 2𝑙𝑒𝑙𝑝

diameter, respectively.32 Equations S6b and c are simple relationships for three dimensional 

diffusion. Equation S6a is for diffusion along the random-walk trajectory of the tube, which 

controls the micelle diffusion at times less than . To obtain Eq. S6a, note that the curvilinear �̅�𝑟𝑒𝑝

distance  traveled by the micelle along the tube is related to the time for reaction by 𝑥𝑐(�̅�𝑟𝑒𝑐)
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, and that the distance traveled in real space  is related to the curvilinear 𝑥𝑐(�̅�𝑟𝑒𝑐)2~𝐷𝑐𝜏𝑟𝑒𝑐 𝑥(�̅�𝑟𝑒𝑐)

distance traveled (along the random walk with step size ) by  From these 𝑎 𝑥(�̅�𝑟𝑒𝑐)2 ~𝑎 𝑥𝑐(�̅�𝑟𝑒𝑐). 

equations and the formula for  we get Eq. S6a.  �̅�𝑟𝑒𝑝

With the diffusion distance of micelle ends set by , the diffusion time  can be determined by 〈ℎ〉 �̅�𝐷

solving the following equations for either entangled or unentangled solutions:

〈ℎ〉2 = {𝑎〈𝐿𝑡〉 ∙ (�̅�𝐷/�̅�𝑟𝑒𝑝)0.5  𝑓𝑜𝑟 𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠
        �̅�𝐷 ∙ 𝐷𝑡           𝑓𝑜𝑟 𝑢𝑛𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 �                    (𝑆8)

Note that once micelles are entangled, ; therefore within , the diffusion of micelle 〈ℎ〉≅𝑙𝑒 < 〈𝐿〉 〈ℎ〉

ends is dictated by reptation. With , combining Eqs. S3~S8, it follows that:𝑎 ∙ 〈𝐿𝑡〉 = 〈𝐿〉 ∙ 2𝑙𝑝

𝜍𝐷𝐶 ≡
�̅�𝐷

�̅�𝑟𝑒𝑐
= {      ( �̅�𝐷

�̅�𝑏𝑟
)4        𝑓𝑜𝑟 𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑠ℎ𝑜𝑟𝑡 𝑡𝑖𝑚𝑒𝑠

(�̅�2/3
𝑏𝑟 �̅�1/2

𝑟𝑒𝑝

�̅�1/6
𝐷 �̅�𝐺

)3  𝑓𝑜𝑟 𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑙𝑜𝑛𝑔 𝑡𝑖𝑚𝑒𝑠

    (�̅�𝑏𝑟

�̅�𝐷
)2       𝑓𝑜𝑟 𝑢𝑛𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑎𝑙𝑙 𝑡𝑖𝑚𝑒𝑠

�      (𝑆9)

where  ( ) is the time for center of mass diffusion over the average end-to-end distance �̅�𝐺 ≡ 2𝑙𝑝〈𝐿〉/𝐷𝐺

of a micelle of average length . Given =298.2 K, =1.2 mPa.s, and =4 nm, for partially 〈𝐿〉 𝑇 𝜂𝑠 𝑑

entangled WLM solutions at [Na+]=0.601 M: =1.14 μm, =32 nm, (see Fig. 7) and =78 nm 〈𝐿〉 𝑙𝑝 〈ℎ〉

(from Eq. S8), we obtain =12.5 ms, = 87.4 µs, and =0.373 s. By the same token, for well �̅�𝑟𝑒𝑝 �̅�𝐷 �̅�𝐺

entangled WLM solutions at [Na+]=0.852 M: =5.90 μm, =57 nm, (see Fig. 7) and =135 nm 〈𝐿〉 𝑙𝑝 〈ℎ〉

(from Eq. S8), =3.18 s, = 2.34 ms, and =94.1 s. �̅�𝑟𝑒𝑝 �̅�𝐷 �̅�𝐺
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From the breakage times in Fig. 6f and Eq. S9, for the partially entangled solution ( =1.45 s), �̅�𝑏𝑟

assuming that recombination reaction occurs at early times gives  =1.31×10-17. Since 𝜍𝐷𝐶

 and = 87.4 µs, this implies that  is far too long to be self-consistent with the early-𝜍𝐷𝐶 ≡ �̅�𝐷/�̅�𝑟𝑒𝑐 �̅�𝐷 �̅�𝑟𝑒𝑐

time assumption for recombination. Hence, we can safely take the late time formula for this 

solution. Doing so gives = 6.06. This implies that the mean-field theory is marginal, or 𝜍𝐷𝐶

beginning to fail for this solution. If we use this value to compute the distance  that the 𝑥(�̅�𝑟𝑒𝑐)

micelle ends diffuse before recombining, we get =49.8 nm, which is of order the average 𝑥(�̅�𝑟𝑒𝑐)

separation distance between micelle ends at this concentration. Thus, a freshly created micelle end 

typically is able to find and fuse with its original partner micelle about as easily and some other 

micelle can do so. For the well-entangled solution ( =0.82 s), however, =6.63×10-11 at early �̅�𝑏𝑟 𝜍𝐷𝐶

times and 9.46×10-5 at late times. Thus,  for the well entangled solutions is found to be far less 𝜍𝐷𝐶

than unity no matter whether the early- or late-time diffusion is assumed, indicating that micelle 

breakage and re-formation are deeply within the MF limit. The tiny values of  at early times 𝜍𝐷𝐶

given above are too extreme because they are based on the  scaling of diffusion distance with 𝑡1/4

time, which is no longer valid at long times at which the micelles can escape from their tubes and 

can diffuse with a  power. By time they do this, however,  increases to a much larger value 𝑡1/2 𝜍𝐷𝐶

at late time but still within the MF regime for the well-entangled solution, since the diffusion 

distance has become much greater than the average distance between micelle endcaps (i.e., ~100 〈ℎ〉

nm). It therefore becomes much more likely for different micelles to fuse with the fragments of a 

broken micelle than for the two pieces of a broken micelle to self-recombine. The relatively long 

time for two newly formed ends to recombine with each other is a consequence of the low 

probability of recombining during the very brief time intervals in which they are close enough to 
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fuse (of order ~5 nm separation). As time passes, and they fail to self-recombine, they diffuse 

farther and farther out of this small range, and the time required for them to find each other again, 

to have a new chance to fuse, becomes ever longer. Unless the concentration is dilute or the 

micelles are short, another micelle within this range will have already fused with the partner 

fragment well before self-recombination can occur. Thus, because the probability of recombining 

per encounter is rather low, the chance of self-recombination of the two fragments of a broken 

micelle is small. 

Knowing  from thermodynamics of micelle aggregation65 we can also calculate  for �̅�𝑏𝑟~1/〈𝐿〉 𝜍𝐷𝐶

dilute solutions ( =0.20% SLE1S+CAPB, =298.2 K, =1.2 mPa.s, and =4 nm), whose length 𝜙 𝑇 𝜂𝑠 𝑑

scales are estimated by SANS as shown in Fig. 7a and b. For example, at [Na+]=0.586 M: =488 〈𝐿〉

nm (from Fig. 7) and =115 nm (from Eq. S8); at [Na+]=0.983 M: =3.10 μm (from Fig. 7) and 〈ℎ〉 〈𝐿〉

=214 nm (from Eq. S8), we obtain = 2.46 ms and =3.39 s for [Na+]=0.589 M and = 39.14 〈ℎ〉 �̅�𝐷 �̅�𝑏𝑟 �̅�𝐷

ms and =1.56 s for [Na+]=0.983 M, respectively. (Note that the above values of  are �̅�𝑏𝑟 �̅�𝑏𝑟

determined by assuming a constant breakage rate for unit length of micelle at fixed ionic strength.) 

Thus, the obtained  (i.e., 1.38×106 at [Na+]=0.589 M and 1.59×103 at [Na+]=0.983 M, see Eq. 𝜍𝐷𝐶

S9) for the unentangled solutions are found to be far larger than unity, indicating that micelle 

fusion is diffusion controlled and self-recombination dictates the relaxation.

From Eqs. S7~S9, and , Equation S9 can also be rewritten in a detailed form as:𝑎 ∙ 〈𝐿𝑡〉 = 〈𝐿〉 ∙ 2𝑙𝑝
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𝜍𝐷𝐶 ≡ { [ 𝑑8/3〈𝐿〉4/3

32𝜋2/3𝜙4/3 ∙ 𝑙𝑒𝑙𝑝𝐷𝑐 ∙ �̅�𝑏𝑟
]4  𝑓𝑜𝑟 𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑠ℎ𝑜𝑟𝑡 𝑡𝑖𝑚𝑒𝑠

[ 21/3𝜙2/9𝐷2/3
𝑐 ∙ �̅�2/3

𝑏𝑟

3𝜋8/9𝑑4/9 ∙ �̅�𝑙1/3
𝑒 𝑙1/3

𝑝 〈𝐿〉2/9]3  𝑓𝑜𝑟 𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑙𝑜𝑛𝑔 𝑡𝑖𝑚𝑒𝑠 

     [ 4𝜙2/3𝐷𝑡 ∙ �̅�𝑏𝑟

𝜋2/3𝑑4/3〈𝐿〉2/3]2        𝑓𝑜𝑟 𝑢𝑛𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑎𝑙𝑙 𝑡𝑖𝑚𝑒𝑠
�    (𝑆10)

Since   (  is the breakage rate per unit length of micelle), , and �̅�𝑏𝑟 ≡ 1/(𝑘𝑏𝑟〈𝐿〉) 𝑘𝑏𝑟 𝐷𝑐,𝐷𝑡~1/〈𝐿〉

assuming  as well as , Eq. S10 can be simplified as:𝑙𝑒~〈ℎ〉~3 〈𝐿〉/𝜙 〈𝐿〉~𝜙𝜈

𝜍𝐷𝐶 ≡ { (〈𝐿〉3

𝜙 )4~𝜙4(3𝜈 ‒ 1)     𝑓𝑜𝑟 𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑠ℎ𝑜𝑟𝑡 𝑡𝑖𝑚𝑒𝑠

( 1

〈𝐿〉4/3)3~𝜙 ‒ 4𝜈         𝑓𝑜𝑟 𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑙𝑜𝑛𝑔 𝑡𝑖𝑚𝑒𝑠 

( 𝜙2/3

〈𝐿〉8/3)2~𝜙
4
3

(1 ‒ 4𝜈)
    𝑓𝑜𝑟 𝑢𝑛𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑎𝑙𝑙 𝑡𝑖𝑚𝑒𝑠

�       (𝑆11)


