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1 Comparing hCOM and h

In this appendix, we present the derivation which leads to Eq. 1. Consider the model setup illustrated in Fig. S1. The
simulation box is a fixed-volume orthorhombic box with side lengths Lx, Ly, and Lz maintained at constant temperature,
T . It contains Ntot water molecules in contact with a solid surface a of length lS,x that runs from xS,0 to xS,1 along the
x-axis. Its surface is normal to the z-axis and the separation between opposing faces across periodic boundary conditions
is lz. We will refer to the space between the two faces of the solid surface as the inner region, and the space outside as
the outer region. The vapor-liquid interface in the inner region is located at x = H, the position of its midpoint.

For a single-component system of point masses (or rigid molecules, whose positions are identified by their centers of
mass), 〈xCOM〉κ,N∗ for the entire system is related to the total number density profile at equilibrium, ρ(x, y, z), by

〈xCOM〉κ,N∗ ≡ 1

Ntot

∫
V

dV xρ(x, y, z) (1)

where the integral is taken over the entire simulation box (volume V ) and the dependence of ρ on the biasing parameters
κ and N∗ is suppressed for clarity. Assuming that ρ is constant along y due to periodic boundary conditions,

〈xCOM〉κ,N∗ =
Ly
Ntot

∫ Lx

0

dx

∫ Lz

0

dz xρ(x, z) (2)

In evaluating Eq. 2, we distinguish between several different regions of the simulation box to simplify the calculation.
First, we assume that lS,x is large enough there are regions to the left and right of the inner vapor-liquid interface in which
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Figure S1: Illustration of the model system employed to estimate the accuracy of using xCOM to track the location of the
vapor-liquid interface.
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the density is unaffected by the inner vapor-liquid interface or edges of the surface, and is therefore constant along x.
Denote the density of the liquid and vapor in these "bulk" inner regions by ρL,S(z) and ρV,S(z), respectively. We assume
that deviations of the density field away from these profiles due to the presence of the inner vapor-liquid interface are
confined to the region from xA(N∗) to xB(N∗). Provided that the inner vapor-liquid interface maintains its shape as N∗

increases, ∆xAB = xB − xA is constant and xA(N∗) ∝ H(N∗). To account for edge effects, we place the Gibbs dividing
surface between the inner and outer liquid phases at xS,0 and assume that the edge effects are confined to the region
xS,0 ±∆xS,0 with width 2∆xS,0. We use the same approach at the right edge of the slab and confine the inhomogeneity
to the region xS,1 ± ∆xS,1. The corresponding surface excesses are ΓL and ΓV, respectively. The probe volume, v, is
chosen such that it encompasses the region x = xS,0 −∆xS,0 to x = xS,1 + ∆xS,1.

Breaking the simulation box into regions as described above,

〈xCOM〉κ,N∗ =
Ly
Ntot

[∫ xS,0−∆xS,0

0

dx

∫ Lz

0

dz xρ(x, z)︸ ︷︷ ︸
to the left of the surface

+

∫ xS,0−∆xS,0

xS,0−∆xS,0

dx

∫ Lz

0

dz xρ(x, z)︸ ︷︷ ︸
left edge of surface

+

∫ xA(N∗)

xS,0+∆xS,0

dx

∫ Lz

0

dz xρL,S(z)︸ ︷︷ ︸
"bulk" liquid between surface

+

∫ xB(N∗)

xA(N∗)

dx

∫ Lz

0

dz xρ(x, z)︸ ︷︷ ︸
inner vapor-liquid interface

+

∫ xS,1−∆xS,1

xB(N∗)

dx

∫ Lz

0

dz xρV,S(z)︸ ︷︷ ︸
"bulk" vapor between surface

+

∫ xS,1+∆xS,1

xS,1−∆xS,1

dx

∫ Lz

0

dz xρ(x, z)︸ ︷︷ ︸
right edge of surface

+

∫ Lx

xS,1+∆xS,1

dx

∫ Lz

0

dz xρ(x, z)︸ ︷︷ ︸
to the right of the surface

]
(3)

After taking the derivative with respect to N∗, it can be shown that

hCOM

h
≡

d〈xCOM〉κ,N∗
/

dN∗

dH/dN∗ = 1− (ΓL + ΓV)Ao

Ntot
− (1− ζr)

[
1− 〈Nv〉κ,N

∗

Ntot
− ∆xS,0

Lx

ρL,b

ρtot
− ∆xS,1

Lx

ρV,b

ρtot

]
− ζ ρV,b

ρtot

[
ρ̄V,S

ρV,b

lS,x
Lx

+ r

(
1− lS,x

Lx

)]
(4)

where Ao = LyLz is the outer cross-sectional area, ρtot ≡ Ntot/V is the average density, ΓL and ΓV are the surface
excesses at either end of the surface,

ΓL ≡
∫ xS,0

xS,0−∆xS,0

dx
[
ρ̄o(x)− ρL,b

]
+ ζ

∫ xS,0+∆xS,0

xS,0

dx
[
ρ̄i(x)− ρ̄L,S

]
,

ΓV ≡ ζ
∫ xS,1

xS,1−∆xS,1

dx
[
ρ̄i(x)− ρ̄V,S

]
+

∫ xS,1+∆xS,1

xS,1

dx
[
ρ̄o(x)− ρV,b

]
,

ζ = lz/Lz is the fraction of the box along z that is between the surfaces, r ≡ ∆ρ̄S/∆ρb = (ρ̄L,S − ρ̄V,S)/(ρL,b −
ρV,b) is the ratio of differences in average density between the inner and outer regions, ρ̄L,S = 1

lz

∫
lz

dz ρL,S(z) and
ρ̄V,S = 1

lz

∫
lz

dz ρV,S(z) are the average densities in the bulk inner regions, and ρ̄i(x) = 1
lz

∫
lz

dz ρ(x, z) and ρ̄o(x) =
1
Lz

∫ Lz

0
dz ρ(x, z) are the densities averaged over the inner and outer cross-sectional areas (respectively).

If we assume that the vapor and liquid densities are uniform and equal to their bulk values (ρV,b and ρL,b, respectively),
then ρ̄V,S = ρV,b and ρ̄L,S = ρL,b; since edge effects are therefore also neglected, ∆xS,0 = ∆xS,1 = 0 and ΓL = ΓV = 0.
Eq. 4 then greatly simplifies to

hCOM

h
= 1− αλ− (1− α)

ρV,b

ρtot
(5)

where α ≡ lS,z/Lz = 1 − ζ is the fraction of the box occupied by the solid surface along z, and λ ≡ 1 − 〈Ñv〉κ,N∗/Ntot
is the fraction of molecules outside the observation volume. Lastly, for fluids far from their triple point (such as water
at ambient conditions), ρV,b � ρtot when the liquid occupies a substantial part of the simulation box. and therefore the
last term in Eq. 5 is negligible. This leads to Eq. 1 of the main text: hCOM/h ≈ 1− αλ.
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