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1 Location of the observation volume v

The observation volume is chosen to be a cuboid. The left edge of v is placed around 1 nm to the
left of the leftmost atoms in the solid surface. As shown in Figure 1 of the main text, the observation
volume covers the entire solid surface, and its right edge is placed to the right of the rightmost solid
atoms. Out of the two vapor-liquid interfaces that separate the liquid slab and vapor, the left interface
remains well outside v (far from the surface), whereas the right interface remains well within v in all
of our biased simulations. These choices enable us to ensure that as the liquid slab moves along the
surface, the only physical process that occurs is the replacement of vapor-solid interfacial area by an
equivalent amount of liquid-solid interfacial area, and that there are no edge effects.

2 Interface position H and free energy Fκ,N∗ vary linearly with N ∗

To show that the interface position H ≡ 〈xCOM〉κ,N∗ and free energy Fκ,N∗ in the biased ensemble
vary linearly with N∗, we first consider an ensemble with a constant number of coarse-grained waters,
Ñ , in the observation volume, v. The free energy difference between such an ensemble and the
unbiased ensemble, Fv(Ñ), is related to the statistics, Pv(Ñ) = 〈δ(Ñv − Ñ)〉0, of coarse-grained water
numbers in v through βFv(Ñ) = − lnPv(Ñ); here 〈O(R)〉0 represents the average of O(R) in the
unbiased ensemble. In the constant-Ñ ensemble, the position of the vapor-liquid interface, Hn, can be
characterized using the corresponding ensemble average of the water slab center of mass position in the
simulation box in the direction (x) perpendicular to the vapor-liquid interface, i.e., Hn ≡ 〈xCOM〉Ñ ,

where 〈O(R)〉Ñ represents the average of O(R) in the constant-Ñ ensemble.
As the number of coarse-grained water molecules inside the observation volume (v) is increased

by δÑ , the vapor-liquid interface ought to advance along the surface in x-direction by a distance δHn.
However, the shape of the vapor-liquid interface is expected to be independent of Ñ ; instead, it is
determined by the balance of forces at the 3-phase contact line, which is governed entirely by the
corresponding interfacial tensions. Thus, δÑ and δHn ought to be related through:

δÑ = δHn × L×
∫ zhigh

zlow

[ρ̃L(z)− ρ̃V(z)]dz, (1)

where ρ̃L(z) and ρ̃V(z) are the coarse-grained density profiles (along the z-axis) of the liquid and vapor
confined between the two solid surfaces, respectively. L is the length of the simulation box along the
y-axis, and zlow and zhigh are the lowest and highest coordinates of solid atoms that are in contact
with water molecules, respectively. The corresponding slope, hn ≡ dHn/dÑ can then be expressed as:

hn =
1

L×
∫ zhigh
zlow

[ρ̃L(z)− ρ̃V(z)]dz
. (2)

For a homogeneous flat solid surface, the water density profile remains unchanged regardless the
position of the interface, and both zlow and zhigh are constants. Therefore, the slope hn is a constant,
i.e. Hn is a linear function of Ñ . Because free energy and interface position are linearly related to
one another (Equation 3 of the main text), Fv(Ñ) should also be a linear function of Ñ , making
fn ≡ dFv(Ñ)/dÑ a constant.

Moreover, the free energetics of the constant-Ñ ensemble, Fv(Ñ), and the free energetics of biased
ensemble, Fκ,N∗ , are related through1,2

Fv(Ñ) = F κ,N
∗

v (Ñ)− Uκ,N∗(Ñ) + Fκ,N∗ , (3)
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where Uκ,N∗(Ñ) = κ
2 (Ñ − N∗)2 is the parabolic biasing potential, and βF κ,N

∗
v (Ñ) = − lnP κ,N

∗
v (Ñ)

represents the free energetics of Ñv in the biased ensemble, with the corresponding statistics being
given by P κ,N

∗
v (Ñ) = 〈δ(Ñv − Ñ)〉κ,N∗ . Taking the derivative of Equation 3 with respect to Ñ :

fn ≡
∂Fv

∂Ñ
=
∂F κ,N

∗
v

∂Ñ
− κ(Ñ −N∗), (4)

where as discussed above, fn is a constant (independent of Ñ). By recognizing that F κ,N
∗

v (Ñ) ought
to have a minimum at Ñ = 〈Ñv〉κ,N∗ , and that the corresponding Ñ -derivative ought to be 0, we get:

fn = −κ[〈Ñv〉κ,N∗ −N∗]. (5)

From Equation 6 of the main text, we then see that

fn = κ[N∗ − 〈Ñv〉κ,N∗ ] = f. (6)

Because fn is a constant, f ≡ dFκ,N∗/dN
∗ should also be a constant. Thus, Fκ,N∗ must be a linear

function of N∗. Finally, because the free energetics, Fκ,N∗ , and interface position, H ≡ 〈xCOM〉κ,N∗ ,
in the biased ensemble are linearly related to one another (Equation 3 of the main text), H must also
a linear function of N∗, and h a constant.

For the LJ surface with εSW=1.94 kJ/mol, we used umbrella sampling to obtain Fv(Ñ); i.e., we

employed biased simulations with sufficient overlap in the distributions, P κ,N
∗

v (Ñ), between neighbor-
ing windows. We then analyzed the results using standard techniques, such as the weighted histogram
analysis algorithm (WHAM)3 to obtain both Fv(Ñ) as a function of Ñ , and Fκ,N∗ as a function of
N∗. These results are shown in Figures S1a and S1b, and confirm the linear dependences of Fv(Ñ) on
Ñ and of Fκ,N∗ on N∗; the corresponding slopes, f and fn also agree with one another, as expected.
The simple (linear) dependences of Fv(N) and Fκ,N∗ as well as of Hn and H makes the estimation of
f and h both straightforward and efficient, and lie at the heart of the simplicity and computational
efficiency of SWIPES.

For SI

(a) (b)

Figure S 1: For the LJ surface with εSW = 1.94 kJ/mol: (a) Fv(Ñ) calculated using umbrella sampling
and WHAM (black symbols) is shown as a function of Ñ . (b) Fκ,N∗ calculated using umbrella sampling
and WHAM (black symbols) is shown as a function of N∗. The dashed lines are linear fits to the data.

3 Estimating f from individual biased simulations

By using Equation 7 of the main text, f can be estimated from every biased simulation. Such
estimates are shown in Figure S2 (symbols) for the LJ surface with εSW = 1.94 kJ/mol. The average of
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f over the 12 independent simulations is indicated by the horizontal dashed line, and is in agreement
with f calculated from the y-intercept of 〈Nv〉κ,N∗ vs N∗; see Figure 2a of the main text.

Figure S 2: For the LJ surface with εSW = 1.94 kJ/mol, f = κ(N∗ − 〈Ñv〉κ,N∗) (Equation 7 of the
main text) is estimated from each biased simulation (symbols). The horizontal dashed line is the value
of f averaged over the 12 f -estimates obtained from the biased simulations.

4 Estimating h from covariances

From every biased simulation, the slope, h ≡ d〈xCOM〉κ,N∗/dN∗ can be estimated using the
co-variance of the fluctuations in xCOM and Ñv (Equation 9 of the main text). For the LJ surface
with εSW = 1.94 kJ/mol, h thus obtained is shown as a function of N∗ in Figure S3; it is clear
that the statistical uncertainties associated with the corresponding estimates of h is substantial. The
average of the h-estimates obtained using the co-variance relation from the 12 biased simulations is
7.8(±1) × 10−4 nm (dashed line in Figure S3), and agrees reasonably well with the estimate of h
obtained from the slope of the line fitted to 〈xCOM〉κ,N∗ vs N∗ (Figure 2b of the main text).

Figure S 3: For the LJ surface with εSW = 1.94 kJ/mol, h estimated from the co-variance of xCOM

and Ñv is shown for each biased simulation (symbols). The dashed line (black) indicates the average
of the 12 h-estimates obtained from the biased simulations. The dot-dashed line (blue) indicates the
value of h obtained in Figure 2b of the main text.
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5 〈Ñv〉κ,N∗ and 〈xCOM〉κ,N∗ for LJ surfaces with different εSW-values
0.2 0.5 2.08 2.25

(d)(c)(b)(a)

(h)(g)(f)(e)

Figure S 4: Ensemble averages of the coarse-grained number of water in the observation volume,
〈Ñv〉κ,N∗ , are shown as a function of N∗ for LJ surfaces with εSW-values of (a) 0.1 kJ/mol, (b) 0.5
kJ/mol, (c) 2.08 kJ/mol, and (d) 2.25 kJ/mol, respectively. Ensemble averages of water slab center of
mass position along the x-axis, 〈xCOM〉κ,N∗ , are shown as a function of N∗ for LJ surface with εSW-
values of (e) 0.1 kJ/mol, (f) 0.5 kJ/mol, (g) 2.08 kJ/mol, and (h) 2.25 kJ/mol, respectively. Dashed
lines are linear fits to the simulation data (symbols). In fitting 〈Ñv〉κ,N∗ vs. N∗, the slope is set to 1.

6 Effect of solid surfaces separation distance on the calculation of k

For all the biased simulations described in the main text, the length of the simulation box in
the z-direction, Lz, (which sets the separation between the solid surface) was fixed to be 14.319 nm.
Here we estimate k using a smaller and larger systems with Lz-values of 10.023 nm and 17.182 nm,
respectively. While 7000 water molecules were used in the biased simulations reported in the main
text, 5000 and 12000 waters are used in the small and large systems, respectively. The solid surfaces
themselves continue to be made up from 8640 atoms. In Figure S5, the ensemble averages 〈Ñv〉κ,N∗
and 〈xCOM〉κ,N∗ are shown as functions of N∗ for the small and large systems, and enable estimation
of k. The contact angles thus estimated from the small and large systems using SWIPES are 40(2)◦

and 41(2)◦, respectively, and agree with one another as well as with the system used in the main text
within statistical uncertainty. Alternatively, contact angles can also be extracted from vapor-liquid
interface geometries, as shown in Figure S6. The contact angles thus estimated for the small and large
systems are 38(3)◦ and 39(3)◦, respectively, and agree with one another as well as with the system
used in the main text within statistical uncertainty.
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(a) (b) 

(d) (c) 

Figure S 5: For the LJ surface with εSW = 1.94 kJ/mol: (a) Ensemble average of the coarse-grained
number of waters in the observation volume, 〈Ñv〉κ,N∗ , as a function of N∗ obtained from biased
simulations using the small system (see text). (b) Ensemble average of water slab center of mass
position along the x-axis, 〈xCOM〉κ,N∗ , as a function of N∗ obtained from biased simulations using the
small system. (c) Ensemble average of the coarse-grained number of water in the observation volume,
〈Ñv〉κ,N∗ , as a function of N∗ obtained from biased simulations using the large system (see text). (d)
Ensemble average of water slab center of mass position along the x-axis, 〈xCOM〉κ,N∗ , as a function of
N∗ obtained from biased simulations using the large system.
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Figure S 6: Vapor-liquid interface profiles for the LJ surface with εSW =1.94 kJ/mol obtained from
biased simulations of the large (L) and small (S) systems; the interface profiles are fit to circles (red
dashed lines).

7 Geometry of vapor-liquid interfaces

(b)(a) (c)

Figure S 7: Vapor-liquid interface profiles obtained from our biased simulations for LJ surfaces with
εSW of (a) 0.5 kJ/mol, (b) 1.0 kJ/mol, and (c) 2.02 kJ/mol, respectively; the profiles are fit to circles
(red dashed lines).
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8 Geometry of cylindrical droplets
(a) (c)(b)

(a) (b) (c)

Figure S 8: Vapor-liquid interface profiles for cylindrical water droplets on LJ surfaces with εSW of
(a) 0.5 kJ/mol, (b) 1.5 kJ/mol, and (c) 2.02 kJ/mol, respectively; the profiles are fit to circles (red
dashed lines).
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