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Derivation of elastic constants for micellar cubic system:
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Derivation of elastic constants for lamellar system:
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Intermicellar distances (D, and D,) in the lamellar case is defined as D; = § — V,,,,6 and D, =
(d = 8)(1 — Vpeo), Where V,,,, and V., are the volume fraction of polypropylene oxide block
polyethlene oxide block, respectively; and § is the apolar domain size, which in turn is a function
of lattice parameter, d, and apolar volume fraction, f. Therefore, D; = (1 —V,,,)fd = p;d and
Dy = (1 = Vypeo)(1 — f)d = Bod. Similarly, after deformation, the intermicellar distances

changeto D; = ,d, and D, = B,d;.
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Derivation of elastic constants for hexagonal system:
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Also, the shear elastic constant will be:
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