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S1: A theoretical model of self-assembly of curved nanodomains in a two-component membrane

We use the theory of self-assembly to describe the accumulation of curved membrane nanodomains composed of lipids and proteins
into spherical or necklace membrane protrusions. The curved nanodomains (of total number N) are initially distributed in the weakly
curved spherical membrane surface of constant mean curvature H=1/Ry. We assume that the nanodomains are laterally mobile over
the membrane surface. For isotropic curved membrane protrusion of constant high mean curvature H=1/r. Here, r is the radius of
curvature everywhere on the membrane protrusion which may be a sphere or necklace formation (see Fig. and assume Ry > r.

Figure S1 Growth of necklace-like protrusions is energetically favorable when critical concentration . is surpassed.

For the sake of simplicity we assume that the free energy of a single flexible membrane nanodomain can be written in the form [V.
Kralj-Iglic et al. Deviatoric elasticity as a possible physical mechanism explaining collapse of inorganic micro and nanotubes, Physics
letters A, 2002]:

f= %(H—Ho)zao. (S1)

where Hj is the intrinsic mean curvature of an isotropic membrane nanodomain, & is the elastic constant and gy is the area per single
nanodomain. In aggregates of curved flexible membrane nanodomains the local membrane bending constant is k. = £/4 and the
membrane spontaneous curvature cy = 2Hy.

Curved flexible membrane nanodomains in aggregates interact with neighbouring membrane nanodomains. We denote the corre-
sponding interaction energy per curved flexible membrane nanodomain (monomer) in an aggregate composed of i nanodomains as w(i)
where we assume that the energy w(i) depends on the size of the aggregate composed of i nanodomains. The mean free energy per
nanodomain in a curved aggregate (where H = D = 1/r) composed of i nanodomains can be written as:

1 = fe—wli), (52)

where f. = f(H=1/r) and w(i) > 0. We assume that in the weakly curved spherical regions of the membrane (having H=1/R,) the
concentration of nanodomains is always below the critical aggregation concentration and therefore nanodomains cannot form two-
dimensional flat aggregates. The mean energy per nanodomain in the weakly curved membrane regions is fi; = f;, , where f;, =
f(H=1/R,). The number density of curved proteins in the weakly curved membrane regions is
N
i=—, S3

1= (83)
where N; is the number of monomeric curved nanodomains in the weakly curved membrane regions and M is the number of lattice
sites in the whole system. The distribution of highly curved aggregates in the membrane protrusions on the scale of number density is
expressed as

(54



where N; denotes the number of aggregates with aggregation number i. The number densities ¥; and x; must fulfil the conservation
condition for the total number of flexible nanodomains in or on the membrane:

X1 +ixi=N/M. (S5)

i=1
The free energy .# of all nanodomains in or on the membrane can be written as:
F =M% i +KT% (Ing —1)]+M Y [xi 1 +kT? (m% - 1)] —uM(E+ Y x) (S6)
i=1 i=1

where p is the Lagrange parameter assuring conservation of protein concentrations. The above expression for the free energy also
involves the contributions of configurational entropy. We minimize .# with respect to %; and x;:

0F 0.7
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0% 0, e 0,i=1,2,3, .., 87
which leads to equilibrium distributions:
X =exp (— fx’;{; “) , (S8)
. i
x; =1 exp (*ﬁ [fc*W*lJ]> ; (59

where we assumed for simplicity that w(i) = w is independent of aggregate size. The quantity u can be expressed from Eq. and

substituted in Eq.[S9|to get: '
. fxp +w—fe !
- . e 7 JC . S10
Xi =1 {xl exp ( T (S10)
We see that if the concentration ¥, is small, aggregate growth will not be favorable, since x; > x; > x3.... Furthermore, x; can never

exceed unity, leading to the maximal possible value of the number density of monomeric curved flexible nanodomains in the weakly
curved parts of the membrane when %, approaches exp [(f. — fsp —w)/kT]. The critical concentration is therefore

Af —
)Zczexp( jkTW)’ (S11)

where Af = f. — fp is the difference between the energy of a single nanodomain on the highly curved membrane protrusion and the
energy of the single nanodomain in the weakly curved membrane region with:

Ea, (1 Ea, (1
Af =22 (; —ZHO) “3R (170 —2H0> . (S12)
If ¥, is above %, , the formation of a very long necklace membrane protrusions composed of curved membrane proteins is energetically
favourable. It can be seen from Eq. that longitudinal growth of the necklace membrane protrusions is dependent on the energy
difference Af (Eq. and the strength of the direct interaction between nanodomains w. The critical concentration %. strongly
depends on Hj.
In the approximation limit Ry > r we can rewrite Eq. as:

Af ~ é (% —2HO) — 27]:‘ (1 —CO) , (S13)

2r r

where k. and ¢ are the local bending constant and spontaneous curvature of aggregates of nanodomains, respectively. We may rewrite
Eq. FTT}

iczexp(Z:—}%(l—cor)—%). (S14)
For 1 < ¢or the value of Af is always negative. The theoretically predicted existence of necklace membrane protrusions (without
application of the local forces) within the self-assembly theory is in line with our MC predictions.

Since the density of nanodomains in or on the membrane is defined with the conservation condition (Eq. , this also gives us the
relation between normalized temperature 7' /Ty and total curved nanodomains concentrations p = N/M. Using the parameters from the
MC simulations, we may graph dependencies x;(i), as seen in Fig. Above small concentrations and especially above %., aggregates
start to form, where the peaks of the distributions are strongly dependent on the total protein concentration in the lattice. We see that
the critical line beyond which aggregate growth is favourable agrees well with the results of MC simulations.
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Figure S2 Aggregate concentrations in dependence on number of nanodomains in the aggregate for different number of flexible nanodomains on the

membrane.



S2: A theoretical analysis of the critical cluster size that enables tubular shapes for flat active proteins

The conditions that trigger the transition into the tubular-shapes (Fig.7) are given by the following force balance:
The force applied at the tip of the cylindrical protrusion by the cluster of active proteins is

F,=F~—, (S15)
a

where F is the force per active protein, R is the radius of the cylinder, and a is the area of a protein on the membrane.
This is balanced by the restoring force of the membrane bending energy

F=x— 1
b= K g (S16)
with k the bending modulus. The force balance gives the radius of the cylindrical protrusions in this phase of the vesicle shapes
2ka\ '3
R. = (T) . (S17)

The prediction of Eq.[ST7]is in good agreement with simulations (see Fig.[S3), where we took for a the area that corresponds to one
vertex in a hexagonal mesh, a = /3 l% /2, where ly = (Lyin + lnax) /2

In the phase of tubular shapes, there are several protrusions (typically 2-3) that pull in opposite directions to provide an approximate
overall force balance, and maintain the relative stability of this shape. Some fusions of protrusions do occur, especially for cases with a
larger number of thinner protrusions, so that their number fluctuates.

An alternative to the derivation of the estimate of the protrusion’s width given above can be obtained as follows: the total work
done by the active forces that pull and extend a protrusion of length L, combined with the curvature energy, is given by
TR

2 k1
FL+2nRL—

W= —
a 2 R?’

(518)
where we assume that the cylinder is very long compared to its radius, so that its surface area is given by: A ~ 2zRL. For a fixed area
constraint, such that we can substitute L = A/(2nR), we can rewrite this work function as

RF K 1
W=—A+A——. S1
5 + >R (S19)

Differentiating this work with respect to R we find that the minimum is given by the radius of Eq.
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Figure S3 Radius of cylindrical protrusions as a function of the k to F ratio for the system with almost flat active proteins with parameters co = 1/(0.9/min),
p =11%, w= 1kTy and T /T, = 0.7 (see top-left hydra-like snapshot on Fig. 7d). Black solid curve is the prediction of Eq. while red dots are the
results of the simulations with error bars indicating standard errors.



S13: Cluster size dependence on the strength of the direct interaction for active system
See Fig.
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Figure S4 Mean cluster size (N,.) as a function of T /T for two different values of the direct interaction constant (legend), for an active system with
F = 1kTy/lmin. The average protein density is p = 9.5%. The graphs do not collapse, unlike in the passive system (Fig. 2d).



SI4: Testing for hysteresis of the pancake transition

See Fig.
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Figure S5 Hysteresis test for the transition into the pancake shape (corresponding to the system shown in Figs. 3,4), showing ensemble averaged
mean cluster size for active curved proteins as a function of temperature for two different initial states — above (blue) and below (red) pancake transition.

Average protein density is p = 11%. Error bars denote standard deviations.



SI5: Cluster size dependence on the density

The activity-driven transition is clearly seen in Fig. 4b of the main text — in the mean cluster size (Ny.) as a function of temperature T /T
for different average densities of proteins p. Without the active protrusive force, (Ny.) monotonically increases with p and decreases
with T, while the protrusive force gives rise to the sharp transition into pancake-like shapes. The lower stability of the rim aggregate at
high protein densities, that we already noticed in Fig.3, is manifested in the non-monotonic dependencies of (Ny.) on p and T (Fig. .
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Figure S6 Ensemble averaged mean cluster size as a function of the average density of curved proteins with co = 1/, Results with active protrusive
force F = 1kTy/lmin are shown for T /Ty = 0.625 (solid) and without it for 7/Ty = 0.4 (dashed).



S16: Vesicle size dependence of the budding and pancake transition
The dependence of the pancake transition on the vesicle radius mirrors the effect on the overall cluster size distribution: a smaller

vesicle has smaller protein clusters and a lower transition temperature (Fig.[S7).
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Figure S7 Dependence of the budding (green) and pancake (red) transition curves as functions of the number of vertices composing the vesicle with
F = 1kTy/Inin,co = 1/lmin, p = 9.5%. Spherical vesicle with the same membrane area A has the radius Ry =~ 0.35v/N (in units of /,;,). Black solid curve

is the prediction for the budding transition line from the linear stability analysis.



SI7: Osmotic pressure dependence of the pancake transition

We studied the effects of adding an isotropic osmotic pressure, which adds a term of the form —p-V to the energy of the vesicle.
We begin by estimating the pressure that balances the active forces of the active proteins along the circular rim of the pancake shape.
The work done by the active proteins and the osmotic pressure is

TTRd
W ~ —prR%d + = FR, (S20)

where we treat the pancake as very thin compared to its radius (d ~ 1/cy < R), so that its volume V ~ nR?d. We keep the membrane
area constant, so maintain: A = 27R(d + R). Substituting this constraint into Eq. we find a critical pressure that balances the protein
forces, when p, ~ F /a ~ kTy/ lsﬁn. At higher pressures, the isotropic pressure overwhelms the protein active forces, and prevents the
pancake shapes.

However, as we can see from the phase diagram on Figs. [S8 to (details of the simulations are descibed below), we find that
there is significant shrinkage of the pancake phase already at much lower pressures. We can explore the interplay between the osmotic
pressure, the pancake shape and the bending energy that keeps the circular protein cluster along the highly curved rim. By considering
only the bending energy and work done by the osmotic pressure, we write an energy functional

TRd (1/1 2 2
~—paRPd+—xk(-(=+2)- . 21
W ~ —pnR*d + 3 K(z( +d) co) (821)

Since we are interested in a regime of low pressures, where the pancake becomes thicker but still maintains d < R, we can simplify
the mean curvature

Rd (1 2
W~ —prR2d + %K(E—m) . (522)

Minimizing this functional, while maintaining the constant surface condition, provides the steady-state width and radius, for a given
surface area A. It turns out that we can approximate R as constant, since it changes very little, and the steady-state width can be

approximated as
d~ |- kK (S23)
cok— PR

Plugging this width into the bending energy of the proteins at the rim (second term in EqJS22)), and equating this bending energy to
some threshold value 8E (of order kT') at which the proteins can be thermally activated to leave the highly curved rim, we get for the

critical pressure the expression
K
Pl :2,/ﬁ,/cgaE. (S24)

Using the values of our simulations in Fig. and noting that the change in the bending energy of proteins at the transition is of
the order §E ~ 0.07kT (see Fig. , this critical pressure is: p. ~0.01kTy/L3. , which is close to the values that we found to affect the
pancake transition temperature.

In the simulations in the main text the membrane is (almost) tension free. However by including the osmotic pressure, we can
expect the membrane tension to increase. To evaluate for membrane tension, we added to the hamiltonian for the membrane energy,
besides the —pV energy term, also the term for tension energy:

ko M . 2
WAZjAZ(ﬂ—I) 7 (525)
i=1

where k4 is the elastic constant of the membrane and the sum runs over all of N, triangles of the network, a; is area of triangle i, and «ay
is area of a tensionless triangle. For ag we choose area of the equilateral triangle, ag = v/3 l(% /4, with side lengths Iy = (Lpin + lnax) /2. We
define membrane tension as the average tension energy per membrane area,

(W
07<A>, (526)

where A is area of the membrane for a given microstate and bra—ket denote canonical ensemble average.

From Fig. mwe see that for no osmotic pressure, p = 0, membrane tension is around 0.0212k7;/I2, . As can be seen by comparing
the phase diagram in Fig. 3 with Fig. we can see that, as expected, the tension term (Eq. does not change the behavior of the
system for p = 0. When we introduce the osmotic pressure, the pancake protein rim disassembles (on Fig. at p ~ 0.0065kT/ lfnin)
while the membrane tension is still close to the value at p = 0. Near the border of the pancake phase, the behavior is quite dynamic, the
protein aggregate at the rim can disassemble and reassemble, and with that the vesicle shape looses and gains again the pancake-like
shape (see Movies S4 and S5). At larger osmotic pressures (on Fig. for p > 0.01kT /L), the pressure difference starts to dominate
the behavior, the vesicle swells and membrane tension starts to increase (see Fig.[S14).
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Figure S8 Representative snapshots of the vesicle at protein densities p =5, 7.5, 10, 12.5 and 15% and temperatures T /T, = 0.6, 0.7, 0.8, 0.9 and 1.0,
for p=0 (with kg = 1kTp, w =1 kTp and F = 1kTy/lnin). Approximate temperatures below which a transition into a pancake-like shapes is observed are
indicated with red dots connected with dashed lines.
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Figure S9 Representative snapshots of the vesicle at protein densities p =5, 7.5, 10, 12.5 and 15% and temperatures T /T, = 0.6, 0.7, 0.8, 0.9 and 1.0,

for p = 0.005kT /1

3

min

(with k4 = 1kTy, w=1 kTy and F = 1kTy/l.in). Approximate temperatures below which a transition into a pancake-like shapes is

observed are indicated with red dots connected with dashed lines.
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Figure S10 Representative snapshots of the vesicle at protein densities p =5, 7.5, 10, 12.5 and 15% and temperatures T /T, = 0.6, 0.7, 0.8, 0.9 and

1.0, for p = 0.01kT /13

min

(with k4 = 1kTyp, w=1kTy and F = 1kTp/l,in). Approximate temperatures below which a transition into a pancake-like shapes is

observed are indicated with red dots connected with dashed lines.
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Figure S11 Representative snapshots of the vesicle at protein densities p =5, 7.5, 10, 12.5 and 15% and temperatures T /T, = 0.6, 0.7, 0.8, 0.9 and 1.0,

for p = 0.015kT /1

3

min

(with k4 = 1kTy, w=1 kTp and F = 1kTy/l.in). Approximate temperatures below which a transition into a pancake-like shapes is

observed are indicated with red dots connected with dashed lines.
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Figure S12 Representative snapshots of the vesicle at protein densities p =5, 7.5, 10, 12.5 and 15% and temperatures T /Tp = 0.6, 0.7, 0.8, 0.9 and

1.0, for p = 0.02kT /I3

min

(with k4 = 1kTyp, w=1kTy and F = 1kTp/l,in). Approximate temperatures below which a transition into a pancake-like shapes is

observed are indicated with red dots connected with dashed lines.
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Figure S13 Representative snapshots of the vesicle at protein densities p =5, 7.5, 10, 12.5 and 15% and temperatures T /T, = 0.6, 0.7, 0.8, 0.9 and 1.0,
for p=0.025kT /13, (With ky = 1kTy, w=1 kTy and F = 1kTy/Lyin)-
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Figure S14 Membrane tension o (Eq. as a function of osmotic pressure p for a membrane with elastic constant (Eq. ks = 1kTy, at temperature
T/To = 0.7, with p = 11 % of active proteins with direct interaction constant w = 1 kTy and protrusive force F = 1 kTy/lin. Averaging is done over 200
statistically independent microstates in steady state and error bars indicate standard deviations. Vertical dashed line indicates border of the pancake
phase. Representative snapshots are shown for p = 0.006k7 /13, (pancake), 0.007kT /i3, (protein rim disassembles and pancake shape is lost) and
0.08kT /3. (quasi-spherical shape).
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Figure S15 Ensemble averaged bending energy of proteins W, as a function of osmotic pressure near the border of the pancake phase (indicated by
dashed vertical line), for a system used also in Fig.|5“|_?} Averaging is done over 400 statistically independent microstates in steady state.
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Figure S16 Ensemble average over 500 statistically uncorrelated microstates of the size of the normalized resultant of the protrusive forces (Eq.[S27)
as a function of the spontaneous curvature of active proteins, for F = 1kTy, w = 1kTy, p = 11% and T /Ty = 0.7. As ¢, increases, the configurations go
from hydra-like to pancake-like (see Fig. 7d in the main text). Error bars indicate standard deviations.

SI8: Normalized resultant of the protrusive forces

In our work we defined the local protrusive force due to the cytoskeleton at the active protein i as F; = F 4;, where F is the size of the
force and 7; is the outward facing normal to the membrane at the location of protein i (see Eq. 4 in the main text). Here we define the
normalized resultant of the protrusive forces,
Yidi
X |l
where the sums run over all proteins. Note that size of vector 7 is r = || = 0 when the protrusive forces cancel out and the net protrusive
force on the vesicle is zero, and r = 1 when all protrusive forces show in the same direction.

Fig. shows the ensemble averaged r for different scenarios - pancake and hydra shapes. As we expected, pancake shapes have
lower r than hydra shapes.

7=

(827)
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Figure S17 Representative snapshots for flat passive proteins with w = 1kT; for protein with densities p = 0.05, 0.11, 0.15 at temperatures T /To = 0.7,
0.9, 1.1. Black solid curve denotes the prediction of the critical temperature by the linear stability analysis (Eq. 6). Gray point with dashed line denotes
where (Ny.) =2 (for p =0.11 and 0.15, (Ny.) > 2 for all three temperatures shown).

SI9: Simulations with flat passive proteins

We also simulated membrane with flat passive proteins, where the only difference between vertices representing the proteins and the
rest of the membrane is that the proteins feel the attractive direct interaction (Eq. 3).

In Fig. we plot representative snapshots for different values of protein densities and temperatures. As expected, all shapes are
quasi-spherical. There is only phase-separation due to direct protein-protein interactions.
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MOVIES

Movie S1: Animation of snapshots in steady-state of the system with p = 7% of curved active proteins with F = 1kTy/Lin, co = 1/lin,
w = 1kTy at T /Ty = 0.6 (see the last snapshot in the second line from below on Fig. 5a).

Movie S2: Animation of snapshots in steady-state of the system with p = 5% of curved active proteins with F = 1kTy/lin, co = 1/Imin,
w=1kTyp at T /Ty = 0.6 (see the second snapshot in the second line from below on Fig. 5a).

Movie S3: Animation of snapshots in steady-state of the system with p = 11% of almost flat active proteins with F = 1kTy/lnin,
co =1/(min), w=1kTy at T /Ty = 0.7 (see the top-left shape on Fig. 7d).

Movie S4: Animation of snapshots in steady-state of the system for osmotic pressure p = 0.006k7/ lfnin with k4 = 1kTp, at temperature
T /To = 0.7, with p = 11 % of active proteins with direct interaction constant w = 1 kT and protrusive force F = 1 kT /l,niy, (see Fig.[S14).

Movie S5: Animation of snapshots in steady-state of the system for osmotic pressure p = 0.007 k7 / lfnm with k4 = 1kTp, at temperature

T /Ty =0.7, with p = 11 % of active proteins with direct interaction constant w = 1 kTy and protrusive force F = 1 kT /Lin (see Fig.[ST4).

Movie S6: Animation of snapshots in steady-state of the system with ¥ = 20kTy, T /Ty = 0.7, p = 11%, w = 1 kT (see Fig. 7d, green dots)
and c¢g = 1/(9in) (top left shape on Fig. 7d, and movie S3), but with a patch of seven vertices fixed in space (denoted with green boxes).

Movie S7: Animation of snapshots in steady-state of the system with x =20kTy, T /Ty =0.7, p = 11%, w = 1 kT (see Fig. 7d, green dots)
and ¢y = 1/lin, but with a patch of seven vertices fixed in space (denoted with green boxes).
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