Journal Name

ARTICLE TYPE

Cite this: DOI: 10.1039/xxxxxxxxx

Supporting Material: Curvature dynamics and longrange effects on fluid-fluid interfaces with colloids

A. Tiribocchi, * a,b F. Bonaccorso,^{*a*} M. Lauricella,^{*b*}, S. Melchionna^{*c*}, A. Montessori^{*d*}, S. Succi^{*a,b,e*}

Average fluid domain size

In this section we plot the average fluid domains size L(t) for different values of particle volume fraction V_f and aspect ratio A (Fig.1).

By following a standard approach¹, L(t) can be estimated by calculating the inverse of the first moment of the spherically averaged structure factor $S(k,t) = \langle \phi(\mathbf{k},t)\phi(-\mathbf{k},t) \rangle_k$,

$$L(t) = 2\pi \frac{\int S(k,t)dk}{\int kS(k,t)dk},$$
(1)

where $\phi(\mathbf{k},t)$ is the spatial Fourier transform of $\phi(\mathbf{r},t)$, k is the modulus wave vector of \mathbf{k} and $\langle \rangle_k$ is an average over a shell in \mathbf{k} space at fixed k.

In all cases domains grow by following a time power law t^{Υ} within a range going from $t \simeq 10^{3}\Delta t$ to $t \simeq 4 \times 10^{3}\Delta t$. The exponent Υ is found approximately equal to 0.6, although a slight dynamic speed-up is observed for increasing values of *A* and V_{f} . We consider the values of L(t) acceptable up to $t \simeq 5.5 \times 10^{3}\Delta t$, after which finite size effects become dominant. Although at $t > 3 \times 10^{3}\Delta t L(t)$ is larger than L/4, our choice of investigating the physics above such values (but below $t \simeq 5.5 \times 10^{3}\Delta t$) ensures that the interface curvature is reasonably at steady state (see Fig.6-7 of the main text) and finite size effects are acceptably mild.

Notes and references

1 V. M. Kendon, M. E. Cates, I. Pagonabarraga, J. C. Desplat, and P. Bladon, J. Fluid Mech. **440**, 147 (2001).

^a Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, 00161 Roma, Italy; E-mail: adriano.tiribocchi@iit.it

^b Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, 00185, Rome, Italy; E-mail: m.lauricella@iac.cnr.it

^c ISC-CNR, Istituto Sistemi Complessi, Università Sapienza, P.le A. Moro 2, 00185 Rome, Italy; E-mail: simone.melchionna@isc.cnr.it

^d Department of Engineering, University of Rome, "Roma Tre" Via Vito Volterra 62, 00146 Rome, Italy; E-mail: andrea.montessori@uniroma3.it

^e Institute for Applied Computational Science, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA; Email: s.succi@iac.cnr.it

Fig. 1 Average fluid domain size L(t) for different values of particle volume fraction V_f and aspect ratio *A*. A slight speed-up of the phase separation dynamics is observed for increasing values of V_f and *A*, with negligible effects on the slope of the curves. Domains grow following a time power law t^{Υ} , where $\Upsilon \simeq 0.6$, within the region from $t \simeq 10^3 \Delta t$ to $t \simeq 3 \times 10^3 \Delta t$. The dashed line, with a slope 0.6, is a guide to the eye. Log-log scale is set on both axis.