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Supplementary Information

1. Derivation of the viscous friction in the meniscus 

Here, we briefly recall the derivation by Moffatt of the pressure exerted by a viscous 

fluid moving in a corner, a situation sketched in figure SI1 [18].

Figure SI1. Sketch of a liquid wedge (blue) with apparent angle 𝛼 moving on a solid surface (black line) at 
a velocity V, in the reference frame of the wedge. ur and u𝜃  are the fluid velocity in the coordinates (r, 𝜃).

Denoting the wedge angle as 𝛼 and its speed as V, the flow is described in the reference 

frame of the moving wedge by a stream function 𝜓, that verifies ur = 1/r(∂𝜓/∂𝜃), and 

u𝜃 = -∂𝜓/∂r, where ur and u𝜃 are the radial and tangential velocities in coordinates (r, 𝜃). 

For a viscous flow, 𝜓 is a solution of the Stokes equation, ∇4𝜓 = 0, whose solutions can be 

decomposed as 𝜓 = V r 𝜆 f(𝜃). Close to the tip of the wedge, the solutions must verify 𝜆 = 

1 to obtain a non-trivial, finite velocity for r→0. The boundary conditions are ur = V and 

u𝜃 = 0 at the liquid-solid interface, and u𝜃 = 0 and a shear stress 𝜎𝜃r = 0 at the liquid-gas 
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interface, which implies f’(0) = 1,  f(0) = 0, f(𝛼) = 0 and f’’(𝛼) − f(𝛼) = 0. Solving the 

Stokes equation with these boundaries conditions for 𝜓 = V r f(𝜃) yields: 

 

𝜓 =  𝑟𝑉
𝛼sin 𝜃 ‒ 𝜃sin 𝛼cos (𝜃 ‒ 𝛼)

𝛼 ‒  sin 𝛼 cos 𝛼
≡ 𝑟𝑉.𝑔𝛼(𝜃) (SI.1)

where we introduced the function g𝛼 for clarity. The pressure gradient obeys ∇p = 𝜂∆u, 

and its projection along the radial coordinate is:
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Integrating along r at the liquid-air boundary (𝜃 = 𝛼) gives the pressure induced by the 

fluid motion on the moving interface: 

 
𝑝𝑓(𝛼) =  ‒

𝜂𝑉
𝑟 [𝑔(3)

𝛼 (𝛼) + 𝑔 '
𝛼(𝛼)] =

2𝜂𝑉
𝑦

𝑠𝑖𝑛2𝛼
𝛼 ‒ sin 𝛼 cos 𝛼

  (SI.3)

where y = r/sin 𝛼 represents the local thickness of liquid as defined in figure 4b. 

2. Prewetting the tubes

In order to prewet the tube walls, we place a slug of oil with centimetric length l and tilt 

the tube by an angle 𝛽 with respect to the vertical. The slug reaches a steady state as its 

weight ~𝜌r2lg cos 𝛽 is balanced by the viscous friction ~𝜂lU, where U is the slug velocity 

that can be controlled by the inclination of the tube (figure SI.2 (a)). For each 

experiment with prewet tubes, we measure the velocity U by timing the descent in tubes 

of known length. The thickness 𝜀 of the deposited film is then calculated using 

Bretherton’s formula 𝜀 = 1.34 r (𝜂U/𝛾)2/3 [13]. As seen in figure SI.2 (b), 𝜀 can also by 

deduced from the shortening ∆l of the liquid slug along its descent. In this case, we 

measure 𝜀 = r ∆l/2U∆t = 21 µm, in good agreement with the value expected using 

Bretherton’s formula, that is, 22 µm. When the drop reaches the end of the tube, we 
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remove it gently by absorbing the oil with a paper, and then perform the experiment 

presented in figure 1 with the other side of the tube. 

Figure SI2. (a) Sketch of an oil slug (in blue) of initial length l advancing at a constant speed U in a tube of 
radius r inclined by an angle 𝛽 to the vertical. As it moves, the slug deposits a liquid film of thickness 𝜀 on 
the tube walls. (b) Pictures of a drop advancing in a tube with r = 0.5 mm and 𝛽 = 50°. In the left picture, 
the drop length is l = 16.7 mm. In the right picture, that is, ∆t =100s later, the drop has progressed by ∆z = 
37 mm, at velocity U = 0.37 mm/s, and its length has become l = 13.5 mm. The thickness of the deposited 
film deduced from the slug shortening is 21 µm.

3. Meniscus shape and macroscopic contact angle 

Eq. 3 is an implicit equation between h and 𝜃 = dh/dx that we can integrate using a 

numerical solver (such as ode15i with MATLAB). The shape of the meniscus depends on 

its velocity, whose initial value is given by eq. 4: V ≈ 𝛾𝜋3 / (72 ln r/𝜀). Later, the meniscus 

speed  decreases during the rise because of bulk viscous dissipation and gravity. We �̇�

sketch the meniscus in figure SI3, where we highlight the coexistence of dynamic and 

static parts drawn with solid and dashed lines, respectively.
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Figure SI3. Sketch of the matching between the static and dynamical part of the meniscus. On the left part 
of the sketch, the static meniscus is a portion of sphere with radius of curvature r* while the dynamic 
meniscus is described in SI1. The matching between the two menisci is done for y = h and 𝛼 = 𝜃, when the 
two curvatures balance.

The size h of the dynamical meniscus can be obtained from the matching the curvatures 

between the part influenced by the flow and the static part of meniscus (with a spherical 

shape of radius r*). The curvature induced by the flow in the dynamical part is 

2Ca sin2(𝛼)/y(𝛼 − cos 𝛼 sin 𝛼) (see SI1) and it is 1/r* =  cos 𝜃/(r − h) in the static part of 

the meniscus, which yields:

 
ℎ =  2 𝐶𝑎 (𝑟 ‒ ℎ)

sin 𝜃tan 𝜃
𝜃 ‒ sin 𝜃 cos 𝜃

  (SI.4)

Using eq. (3), we obtain an implicit equation between h and 𝜃 for a meniscus advancing 

on a film of thickness 𝜀 in a tube of radius r. 

 
ℎ

ln
ℎ
𝜀

𝑟 ‒ ℎ
=

sin 𝜃tan 𝜃
𝜃 ‒ sin 𝜃 cos 𝜃

 
𝜃

∫
0

𝛼 ‒ sin 𝛼cos 𝛼
2sin 𝛼

 𝑑𝛼  (SI.5)

Combined with eq. SI4, we obtain a relation between the angle 𝜃 and the thickness of the 

dynamical meniscus h with the velocity of the meniscus (figure SI4).
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Figure SI4. (a) Thickness of the dynamical meniscus divided by the tube radius and (b) macroscopic 
contact angle as a function of the meniscus velocity v divided by the initial velocity V obtained from eq. (4) 
for a meniscus advancing on film of liquid of thickness 𝜀 = 1nm.

The size of the dynamical meniscus h approaches r as the meniscus velocity  is close to �̇�

the initial velocity V (defined by eq. 4). As the meniscus slows down, the size h of the 

dynamical region rapidly becomes small whereas the angle 𝜃 is still rather large. For 

instance in a tube of radius 0.7 mm, when the velocity has decreased by a factor 2, the 

thickness of the dynamic meniscus is h ≈ 100 µm and the contact angle 𝜃 is above 𝜋/3 a 

consequence is that 𝜃 appears as a macroscopic contact angle, that depends on the 

meniscus velocity. We recover in figure SI5.a the shape of the dynamic meniscus with 

eq. 3 (y < h( ), solid line), and the static part of curvature r* =  [r − h( )]/cos 𝜃( ) �̇� �̇� �̇�

(y > h( ), dashed line).�̇�

We can also retrieve the global behavior of the rising liquid column: the meniscus is 

driven by a force 2𝜋𝛾r cos 𝜃( ) and slowed down by viscous friction in the bulk (8𝜋𝜂z ) �̇� �̇�

and gravity (𝜋r2𝜌gz) which yields the differential equation SI.6:

 2𝑟𝛾cos 𝜃(�̇�) =  8𝜂𝑧�̇� + 𝑟2𝜌𝑔𝑧  (SI.6)

We integrate equation SI.6 to recover the evolution of the meniscus height and compare 

the numerical integration to the data in figures SI5.b and SI5.c. 
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Figure SI5. (a) Meniscus shape at different steps of the rise of a viscous oil (𝜂 = 350 mPa.s) in a dry tube 
(𝜀 = 1 nm) with radius r = 0.7 mm (from bottom to top, t = 0, 0.1, 0.2, 0.3, 0.4, 1.2, 3.5, 9.5, 75.5, 150 s, 
corresponding to a ratio /V = 1, 0.96, 0.89, 0.76, 0.51, 0.24, 0.09, 0). The solid and dashed lines �̇�
respectively represent the meniscus part influenced by line friction and the static region (portion of a 
sphere). In (b) and (c), we compare the data from figures 1.b and 1.c (coloured lines) and the 
corresponding numerical integration (dashed black lines) of equation SI.6. (b) Silicone oil of viscosity 
𝜂 = 350 mPa.s rising in capillary tube of radius r = 0.5 mm either dry (𝜀 = 1 nm) or prewet (𝜀 = 24 µm). 
(c) Silicone oil of viscosity 𝜂 = 50 mPa.s rising in capillary tube of radius r = 0.23 mm either dry (𝜀 = 1 nm) 
or prewet (𝜀 = 4 µm).

As seen in the figure SI5, the numerical integration (black dashed lines) gives accurate 

results for both dry (blue) and prewet (red) tubes, without any adjustable parameter. 

The small difference obtained between the numerical and experimental results could 

reflect small imperfections of the preweting or precursor film thickness. 
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