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SI. STRETCHED GAUSSIAN POLYMER BINDING

In this section, we consider the binding distribution for adding one reversible crosslink between two Gaussian
polymers of N1 and N2 segments, having two of their endpoints fixed at the origin, while their other two endpoints
are fixed at arbitrary coordinates.

Suppose that the first chain has its end fixed at R1, and the other at R2. The partition function for just one chain
is

Q◦(Ni,Ri) = exp

(
−3(x2i + y2i + z2i )

2Nib2

)
(S1)

where i is either 1 or 2, and Ri = (xi, yi, zi) is the end-to-end vector for the polymer (such that |Ri| =
√
x2i + y2i + z2i ).

Equivalently, we can express this as the product of two connected subchains of length ni and Ni − ni:

Q◦(Ni,Ri) =
1

b3

(
3Ni

2πni(Ni − ni)

)3/2 ∫
R′
wi(R

′)w′i(Ri|R′) dR′. (S2)

where

wi(R
′) = exp

(
−3(x′2 + y′2 + z′2)

2nib2

)
(S3)

w′i(Ri|R′) = exp

(
−3((xi − x′)2 + (yi − y′)2 + (zi − z′)2)

2(Ni − ni)b2

)
(S4)

For both chains, the combined partition function is

Qfree(N1, N2,R1,R2) = Q◦(N1,R1)Q◦(N2,R2) (S5)

= exp

(
−3(x21 + y21 + z21)

2N1b2

)
exp

(
−3(x22 + y22 + z22)

2N2b2

)
(S6)

= exp

[
− 3

2b2

(
|R1|2

N1
+
|R2|2

N2

)]
(S7)

The partition function for the two chains when we place a link at position (n1, n2) is

Qbound(n1, n2;N1, N2,R1,R2) =
1

b6

(
3

2π

)3(
N1N2

n1(N1 − n1)n2(N2 − n2)

)3/2

×
∫
R′
w1(R′)w′1(R1|R′)w2(R′)w′2(R2|R′) dR′ (S8)
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Just focusing on x, we must evaluate∫ ∞
−∞

exp

{
− 3

2b2

[(
n1 + n2
n1n2

)
x′2 +

(x1 − x′)2

N1 − n1
+

(x2 − x′)2

N2 − n2

]}
dx′. (S9)

The integrand can be written as

exp

{
− 3

2b2

[(
n1 + n2
n1n2

)
x′2 +

(x1 − x′)2

N1 − n1
+

(x2 − x′)2

N2 − n2

]}
(S10)

= exp

{
− 3

2b2

[(
n1 + n2
n1n2

)
x′2 +

x21 − 2x′x1 + x′2

N1 − n1
+
x22 − 2x′x2 + x′2

N2 − n2

]}
(S11)

= exp

[
− 3

2b2

(
x21

N1 − n1
+

x22
N2 − n2

)]
× exp

{
− 3

2b2

[(
n1 + n2
n1n2

)
x′2 +

−2x′x1 + x′2

N1 − n1
+
−2x′x2 + x′2

N2 − n2

]}
(S12)

The first factor depends only on x1 and x2, so it can be factored out of the integral over x′, leaving behind the second
factor:

exp

{
− 3

2b2

[(
n1 + n2
n1n2

)
x′2 +

−2x′x1 + x′2

N1 − n1
+
−2x′x2 + x′2

N2 − n2

]}
(S13)

= exp

{
− 3

2b2

(
n1 + n2
n1n2

+
N1 − n1 +N2 − n2
(N1 − n1)(N2 − n2)

)
x′2 +

3

b2

(
x1

N1 − n1
+

x2
N2 − n2

)
x′
}

(S14)

We must then integrate this over x′:∫ ∞
−∞

exp

{
− 3A

2b2
x′2 +

3

b2

(
x1

N1 − n1
+

x2
N2 − n2

)
x′
}
dx′

=

√
π

A
exp

[
3

2Ab2

(
x1

N1 − n1
+

x2
N2 − n2

)2
]

where A =

(
1

n1
+

1

n2
+

1

N1 − n1
+

1

N2 − n2

)
(S15)

Performing this integral over y′ and z′ leads to

Qbound(n1, n2;N1, N2,R1,R2) =
1

b3

(
3

2π

)3/2(
N1N2

An1(N1 − n1)n2(N2 − n2)

)3/2

× exp

[
− 3

2b2

(
|R1|2

N1 − n1
+
|R2|2

N2 − n2

)]
× exp

{
3

2Ab2

[(
x1

N1 − n1
+

x2
N2 − n2

)2

+

(
y1

N1 − n1
+

y2
N2 − n2

)2

+

(
z1

N1 − n1
+

z2
N2 − n2

)2
]}

To write the binding partition function in terms of n = n1+n2, we must consider all permutations of binding positions
(n1, n2) that lead to n. For notational simplicity, we restrict to the case where N1 = N2 = N . Both n1 and n2 must be
between 1 and N − 1 (as segment N along each chain is now designated a permanent crosslink with a fixed position).
The total binding partition function for a linker bound to n1 + n2 = n is the sum over all valid permutations of
(n1, n2):

Qpoly,b(n;N,R1,R2) =

B∑
m=A

Qbound(m,n−m;N,N,R1,R2) (S16)

where

A = max (n−N + 1, 1) (S17)

B = min (n− 1, N − 1). (S18)

The binding free energy for attaching a reversible linker with n1 + n2 = n is then computed as normal by
Gpoly,b(n;N,R1,R2) = −kT lnQpoly,b(n;N,R1,R2).



3

Polymer Segment Permanent Crosslink Reversible Crosslink Bind Sites A1/A2 Bind Sites B1/B2

Polymer Segment ε = 1, σ = 1 ε = 1, σ = 1 ε = 1, σ = 1 ε = 1, σ = Rb + 0.5 ε = 1, σ = Rb + 0.5

Permanent Crosslink ε = 1, σ = 1 ε = 1, σ = 1 ε = 1, σ = Rb + 0.5 ε = 1, σ = Rb + 0.5

Reversible Crosslink ε = 1, σ = 1 ε = 1, σ = Rb + 0.5 ε = 1, σ = Rb + 0.5

Bind Sites A1/A2 ε = 1, σ = 2Rb,rep (none)

Bind Sites B1/B2 ε = 1, σ = 2Rb,rep

TABLE I. Inverse power law potential parameters for the intermolecular interactions in the system. Units of measure are E for
ε, D for σ.

SII. MOLECULAR DYNAMICS SIMULATION DETAILS

Our coarse-grained molecular dynamics simulation consists of two bead-spring polymers, each with N = 100
segments, bound together by a permanent crosslink bead at segment 50. The position of the permanent crosslink is
fixed to the origin of the simulation box, while the polymer chains are allowed to fluctuate. The box boundaries are
periodic in all three dimensions, though the size of the box is set to be large enough that the polymer chains do not
interact with their periodic images. Simulation parameters and quantities are all given in terms of fundamental model
units of distance D, energy E (taken to be the thermal unit kT ), mass M, and time τ =

√
MD2/E . Calculations

were carried out using the HOOMD-Blue molecular dynamics package (v2.1.1).1,2 All systems are integrated using a
time step size of dt = 0.001τ .

The beads (segments) comprising the polymer chains are held together by strong harmonic bonds, with the bonding
potential

Ubond(r) =
1

2
kbond(r − r0)2 (S19)

where r is the separation distance between the two beads on a given timestep in the simulation, and r0 is the bond rest
length. We choose kbond = 5000E/D2, and r0 = 0.85D. The bond between polymer segment 50 on each chain, and
the permanent crosslink bead, has kbond = 1000E/D2 with the same r0. This is because the bead for the permanent
crosslink is intended to represent a structure somewhat larger than a single polymer segment. The smaller kbond
for the two permanent crosslink bonds is therefore a coarse-grained implementation of this flexibility/extensibility
(as opposed to using multiple bound sub-beads). It affects the quantitative results of the simulations, but not the
qualitative trends for reversible crosslink binding. The “helper linkers” used in Figure 7 (main text) are identical
to the permanent crosslink bead, and are attached to their two neighbour polymers segments by the same type of
harmonic bond.

Each polymer segment (besides segment 50) has a binding site attached to it via a harmonic bond with k =
5000E/D2, and r0 = 0.4D (henceforth called “rb”). The binding sites on the first polymer chain are distinguished as
type “A1”, while those on the second polymer chain are defined as “A2”.

Reversible crosslink particles may also be added to the simulation box if desired. These particles are composed of
a single bead with two antipodal binding sites, one of type “B1” and the other of type “B2”. The binding sites are
attached to their host bead by harmonic bonds with k = 5000E/D2, and r0 = 0.4D. The two binding sites on each
reversible linker are held at an angle of π relative to each other by a strong angle potential of the form

Uangle(θ) =
1

2
kangle(θ − π)2. (S20)

Here θ is the angle between the two binding sites, kangle = 100E/rad2 is the strength of the angular potential, and π
is the rest angle.

All non-bonded polymer segments, binding sites, the permanent crosslink, and any reversible crosslinks interact
with each other via a Lennard-Jones-like inverse power law potential,

Uint(r) = 4ε
(σ
r

)12
for r < rcut

= 0 otherwise. (S21)

Here, ε is the strength of the potential, σ is the width, and rcut = 3.0D is the cut-off radius. The parameters of the
potential for each pair of bead types in the system are given in Table I. The effective radius of a binding sites is given
by Rb = 0.1D.
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Binding sites of type A repel each other with an effective radius of Rb,rep = 0.45D, and the same for B. However,
a Gaussian binding attraction between binding sites of type A1 and B1, and A2 and B2, is defined by

Ubind(r) = −εbind exp

[
−1

2

(
r

σbind

)2
]

for r < rcut

= 0 otherwise. (S22)

The binding strength is tuned by εbind, and the binding range is set by the binding site radius, σbind = 2RbD.
With these ingredients in place, reversible crosslinks can form one or two bonds with the polymer chains. The

strength of binding is tuned by εbind. The repulsion of binding sites of like type prevents, for example, two polymer
segment binding sites from potentially attaching to a single reversible crosslink binding site. By virtue of separating
the binding sites on the two polymers into two distinct categories, reversible crosslinks may also only form a link
between a segment on polymer chain 1, and another segment on polymer chain 2.

For a given choice of εbind, the effective attraction strength between binding sites is actually weaker than Ubind(r),
because the binding sites are attached to their host beads. As noted in Table I, the host beads interact with other host
beads, and also non-bonded binding sites, via an inverse power law potential. Thus, the effective attraction strength
between two binding sites is the sum of the Gaussian potential Ubind(r), plus the sum of the repulsive contributions
from the inverse power law potentials. The effective depth of the potential energy well for two binding sites can be
calculated analytically by

εbind,eff = min
[
Ubind(r − 2rb) + Uint,host/host(r) + 2Uint,host/binder(r − rb)

]
(S23)

The three terms here correspond to, in order: the attractive Gaussian potential between the two binding sites; the
inverse power law repulsion between the two host beads of the binding sites; and two factors of the inverse power law
repulsion between a host and a binding site. The quantity r is the distance between the two host beads, and rb is the
length of the bond connecting a binding site to its host bead, noted above.

After initialisation, all systems are equilibrated in the NVT ensemble with Langevin dynamics for between 1× 107

and 1 × 108 time steps. System statistics are then recorded within the same ensemble over 1 × 108 time steps (at
intervals of 1× 104 time steps).

SIII. LATTICE SCFT NETWORK DETAILS

Each bridge i in the SCFT model is represented as a random walk with a fixed number of steps Ni (which may be
different for each bridge). The force along a bridge is approximated with the ideal chain model,

Fi(Li) =
2〈Li〉kT
Nib2

, (S24)

where b = 1 is the width of a monomer (equal to the lattice unit size 1 here), 〈Li〉 is the average end-to-end distance
of the bridge extracted directly from the SCFT calculation, and kT is the energy unit (set to unity in the model). As
Li of each bridge changes during each strain step, the force Fi(Li) of the bridge changes according to Eq. S24. The
bridge is instantaneously and irreversibly cut when Fi(Li) exceeds F ∗, a model parameter representing the threshold
force for breaking the connection between a bridge and a node. The cut is performed randomly from either of the
two nodes the bridge is attached to. The bridge then remains in the system, connected to the second node, for all
subsequent strain steps.

The full protocol for carrying out a strain experiment in our coarse-grained SCFT model is as follows:

1. Define a polymer network. This consists of choosing: the number of bridges in the system, the number of
segments in each bridge, how the bridge ends are connected together via nodes, and the initial width and height
of the network.

2. Use the lattice SCFT approach to approximate the equilibrium distribution of polymer conformations and node
positions for the current system size.

3. Compute the force Fi along each bridge i via Eq. S24.

4. Cut each bridge that is bearing a force greater than F ∗.

5. Perform a strain step, in which the width of the network is increased by two lattice units (2b).
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6. Repeat Steps 2 - 5 until the desired final strain is reached.

A square network initially of 50× 50 lattice units in size is employed in our calculations, with 283 bridges and 190
nodes. Of these nodes, 20 are defined as left-hand boundary nodes, and another 20 as right-hand boundary nodes;
the remaining nodes are “free”. The boundary nodes are spatially fixed, and initially placed at a width of 50 lattice
units apart from each other in the system. (Their positions in the vertical axis of the lattice are random.) They thus
represent the scenario of the polymer network being suspended between two boundary plates. The total width of
the system is varied by changing the spacing between the left-hand and right-hand boundary nodes. Note that the
boundaries of the network are invisible to the polymer bridges and free nodes.

The polymer bridges are randomly connected to the boundary and free nodes in the system such that: each node
has either two or three connections; and no two given nodes are connected by two bridges. In the system considered in
the main text, only four out of the 190 nodes have two connections, while the remaining nodes have three connections.
The “coordination number” of three employed here is arbitrary, and can obviously be changed as desired.

The free nodes are assigned random initial positions within the 50× 50 system, so that each bridge i has an initial
length Li,init. The number of segments Ni in each bridge is determined based on Li,init, by enforcing that the initial
tension in each bridge is (2/3)kT/b using Eq. S24. This initial tension can be changed or heterogenised, and represents
a network pre-stress. For bridges where Eq. S24 yields an Ni that is less than 30 segments, the bridge length is set
to 30. As such, the network studied here has a heterogeneous pre-stress.
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