Electronic supplementary information

Preparation of near-infrared laser responsive hydrogels with enhanced laser marking performance

Zheng Cao^{a, b}, Yuyuan Chen^a, Cheng Zhang^a, Junfeng Cheng^{a,c,*}, Dun Wu^a,
Wenzhong Ma^a, Chunlin Liu ^{a, c,*}, Zhisheng Fu^d

- a- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
 - b- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional

 Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345

 Lingling Road, Shanghai 200032, China
- c- National Experimental Demonstration Center for Materials Science and Engineering
 (Changzhou University), Changzhou, 213164, P.R. China
- d- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of
 Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
 *Address correspondence to chunlin301@hotmail.com; junfeng@cczu.edu.cn

Contents Supporting Information

- Figure S1. The particle size distribution of the Bi_2O_3 particles.
- Figure S2. The ΔE values of the laser marked $PAM/PS@Bi_2O_3$ hydrogels at different laser current.
- Figure S3. The ΔE values of the laser marked PAM/Bi₂O₃ and PAM/PS@Bi₂O₃ hydrogels at different loading content of laser sensitive particles.
- Table S1. Characteristic TGA data of the pure hydrogel, $PAM/2\%PS@Bi_2O_3$ hydrogel samples before and after laser marking.

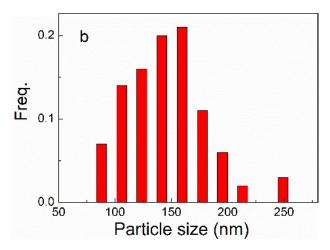


Figure S1. The particle size distribution of the Bi₂O₃ particles.

In order to quantify the laser marking performance of PAM/PS@Bi₂O₃ hydrogels, the color differences are introduced using CIE L*a*b* coordinates in our revised manuscript. Color difference can be defined as the numerical comparison of a sample's color to the standard. It indicates the differences in absolute color coordinates and is referred to as Delta (Δ). These formulas calculate the difference between two colors to identify inconsistencies.

Defined by the Commission Internationale de l'Eclairage (CIE), the L*a*b* color space was modeled after a color-opponent theory stating that two colors cannot be red and green at the same time or yellow and blue at the same time. As shown in the equation below, L indicates lightness, a is the red/green coordinate, and b is the yellow/blue coordinate. These values of PAM/PS@Bi₂O₃ hydrogels before and after laser irradiation can be performed using an X-Rite 7000A spectrometer (X-Rite, USA). Before laser marking, these values can be recorded as L_0 , a_0 , b_0 . After laser marking, these values can be recorded as L_1 , a_1 , b_1 . Deltas for L (Δ L), a (Δ a) and b (Δ b) may be positive (+) or negative (-). The total difference, Delta E (Δ E*), however, is always positive.

$$\Delta E = \sqrt{\Delta L^2 + \Delta a^2 + \Delta b^2} \tag{1}$$

 ΔE was used to determine the laser marking performance of hydrogels before and after laser marking. The larger the value of ΔE , the more obvious the marking contrast.

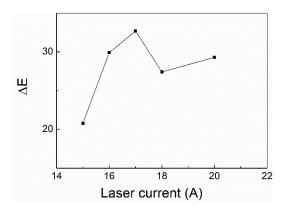


Figure S2. The ΔE values of the laser marked PAM/PS@Bi₂O₃ hydrogels at different laser current.

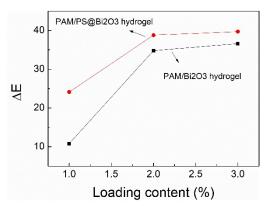


Figure S3. The ΔE values of the laser marked PAM/Bi₂O₃ and PAM/PS@Bi₂O₃ hydrogels at different loading content of laser sensitive particles.

Table S1. Characteristic TGA data of the pure hydrogel, PAM/2%PS@Bi₂O₃ hydrogel samples before and after laser marking.

Samples	Temperature for 5% weight loss T _{5%} (°C)	Temperature for the maximum degradation peak T_{max} (°C)
Unmarked PAM/PS@Bi ₂ O ₃	181.5	390.0
Laser marked PAM/PS@Bi ₂ O ₃	104.0	383.9