Supplementary Information: Spreading dynamics of reactive surfactants driven by Marangoni convection

Thomas Bickel
Univ. Bordeaux, CNRS, Laboratoire Ondes et Matière d'Aquitaine (UMR 5798), F-33400 Talence, France

In these notes, we give some technical details regarding the derivation of equations (5) and (9).

I. CLOSURE RELATION FOR THE INTERFACIAL VELOCITY

Since the Stokes equations are linear, one expects a linear relationship between the interfacial velocity and the concentration $[1,2]$. In the Stokes regime, the velocity field $\mathbf{v}(x, z)=v_{x}(x, z) \mathbf{e}_{x}+v_{z}(x, z) \mathbf{e}_{z}$ obeys the equations

$$
\begin{equation*}
\eta \nabla^{2} \mathbf{v}=\nabla p, \quad \text { and } \quad \nabla \cdot \mathbf{v}=0 \tag{1}
\end{equation*}
$$

together with the boundary conditions (BCs)

$$
\begin{align*}
& \left.v_{z}\right|_{z=0}=0 \tag{2a}\\
& \left.\eta\left(\partial_{z} v_{x}+\partial_{x} v_{z}\right)\right|_{z=0}=-\gamma_{1} \frac{\partial_{x} \Gamma}{\Gamma_{0}} . \tag{2b}
\end{align*}
$$

Define the Fourier transform of $f(x)$ as

$$
\tilde{f}(q)=\mathcal{F}[f(x)]=\int_{-\infty}^{\infty} f(x) e^{-i q x} \mathrm{~d} x
$$

the Stokes equations can be rewritten as

$$
\begin{align*}
& \eta\left(-q^{2} \tilde{v}_{x}+\partial_{z}^{2} \tilde{v}_{x}\right)=i q \tilde{p} \tag{3a}\\
& \eta\left(-q^{2} \tilde{v}_{z}+\partial_{z}^{2} \tilde{v}_{z}\right)=\partial_{z} \tilde{p} \tag{3b}\\
& i q \tilde{v}_{x}+\partial_{z} \tilde{v}_{z}=0 \tag{3c}
\end{align*}
$$

and the BCs at the free interface now read

$$
\begin{align*}
& \tilde{v}_{z}(q, 0)=0 \tag{4a}\\
& \left.\partial_{z} \tilde{v}_{x}\right|_{z=0}=-i q \frac{\gamma_{1}}{\eta \Gamma_{0}} \widetilde{\Gamma}(q) . \tag{4b}
\end{align*}
$$

After some algebra, one can show that eqn (3) can be recast in a single equation for the vertical component of the velocity

$$
\left(\partial_{z}^{4}-2 q^{2} \partial_{z}+q^{4}\right) \tilde{v}_{z}=0
$$

The liquid being confined to the half-space $z<0$, the solution that satisfies the BC (4a) is

$$
\tilde{v}_{z}(q, z)=B z e^{|q| z}
$$

According to eqn (3c), the horizontal component is obtained as

$$
\tilde{v}_{x}(q, z)=\frac{i B}{q}(1+|q| z) e^{|q| z}
$$

Enforcing the Marangoni BC (4b), one finally gets

$$
B=-\frac{\gamma_{1}}{2 \eta \Gamma_{0}} \frac{q^{2}}{|q|} \tilde{\Gamma}(q)
$$

In particular, the interfacial velocity is obtained in Fourier representation

$$
\begin{equation*}
\tilde{v}_{x}(q, 0)=-i \frac{\gamma_{1}}{2 \eta \Gamma_{0}} \operatorname{sgn}(q) \tilde{\Gamma}(q) \tag{5}
\end{equation*}
$$

The inverse transform then involves a convolution product

$$
v_{x}(x, 0)=\frac{\gamma_{1}}{2 \eta \Gamma_{0}} \int_{-\infty}^{\infty} \mathrm{d} x^{\prime} \Gamma\left(x^{\prime}\right) K\left(x-x^{\prime}\right)
$$

with $K(x)=\mathcal{F}^{-1}[-i \operatorname{sgn}(q)]=1 /(\pi x)$, so that one eventually gets the desired relation

$$
\begin{equation*}
v_{x}(x, 0)=\frac{\gamma_{1}}{2 \eta \Gamma_{0}} \int_{-\infty}^{\infty} \mathrm{d} x^{\prime} \frac{\Gamma\left(x^{\prime}\right)}{\pi\left(x-x^{\prime}\right)} \tag{6}
\end{equation*}
$$

Note that the improper integral is understood in the sense of the principal value.

II. PROPERTIES OF HILBERT TRANSFORMS

The Hilbert transform of a function $f(x)$ is defined as [3]

$$
\begin{equation*}
\mathcal{H}[f(x)]=\frac{1}{\pi} f_{-\infty}^{\infty} \frac{f(y)}{x-y} \mathrm{~d} y \tag{7}
\end{equation*}
$$

where the dashed integral refers to the Cauchy principal value. The Hilbert transform satisfies the following properties [3]

$$
\begin{align*}
& \mathcal{H}\left[\partial_{x} f\right]=\partial_{x} \mathcal{H}[f(x)] \tag{8a}\\
& \mathcal{H}[x f(x)]=x \mathcal{H}[f(x)]-\int_{-\infty}^{\infty} f(u) \mathrm{d} u \tag{8b}
\end{align*}
$$

In the following, we shall consider the function $g(x)$ defined as

$$
g(x)=\left\{\begin{array}{l}
\sqrt{\xi^{2}-x^{2}} \text { for }|x|<\xi \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Taking the Hilbert transform, we therefore get

$$
\mathcal{H}[g(x)]=\left\{\begin{array}{l}
x \quad \text { for } \quad|x|<\xi \\
x-\operatorname{sgn}(x) \sqrt{x^{2}-\xi^{2}} \quad \text { otherwise }
\end{array}\right.
$$

Moreover, according to Eq. (8b), we also have

$$
\mathcal{H}[x g(x)]=\left\{\begin{array}{l}
x^{2}-\frac{\xi^{2}}{2} \quad \text { for } \quad|x|<\xi \\
x^{2}-\frac{\xi^{2}}{2}-|x| \sqrt{x^{2}-\xi^{2}}
\end{array} \quad \text { otherwise } .\right.
$$

III. DERIVATION OF THE TIME EVOLUTION EQUATIONS FOR $\mathcal{A}(t)$ AND $\xi(t)$.

In rescales variables, the concentration of surfactants obeys the following nonlinear equation

$$
\begin{equation*}
\partial_{t} \Gamma+\partial_{x}(\Gamma \mathcal{H}[\Gamma])=-\alpha \Gamma . \tag{9}
\end{equation*}
$$

Inspired by previous work $[1,2]$, we consider a semi-circle distribution

$$
\begin{equation*}
\Gamma(x, t)=\mathcal{A}(t) \sqrt{\xi^{2}(t)-x^{2}} \tag{10}
\end{equation*}
$$

for $|x|<\xi(t)$, and $\Gamma(x, t)=0$ otherwise. Here, $\mathcal{A}(t)$ and $\xi(t)$ are two positive functions. We get for this particular choice the relation

$$
\Gamma(x, t) \mathcal{H}[\Gamma(x, t)]=\mathcal{A}(t) x \Gamma(x, t) .
$$

The derivation then consists in taking the Hilbert transform of eqn (9) with $\Gamma(x, t)$ defined by (10). We first proceed in the domain $|x|<\xi(t)$. Making use of
eqn (8a), its is straightforward to obtain

$$
x\left(\dot{\mathcal{A}}+2 \mathcal{A}^{2}+\alpha \mathcal{A}\right)=0 .
$$

But this equation has to be satisfied for all $|x|<\xi(t)$: the term between parenthesis must necessarily vanish, leading to the first equation

$$
\begin{equation*}
\dot{\mathcal{A}}+2 \mathcal{A}^{2}+\alpha \mathcal{A}=0 . \tag{11}
\end{equation*}
$$

We proceed in the same manner for $|x|>\xi(t)$: although the algebra is slightly more tedious, the Hilbert transform of eqn (9) now leads to

$$
\left(x^{2}-\xi^{2}\right)\left(\dot{\mathcal{A}}+2 \mathcal{A}^{2}+\alpha \mathcal{A}\right)=\mathcal{A} \xi(\dot{\xi}-\mathcal{A} \xi)
$$

so that we get the second equation

$$
\begin{equation*}
\dot{\xi}=\mathcal{A} \xi \tag{12}
\end{equation*}
$$

We therefore end up with a set of ordinary differential eqns (11)-(12) that, even though nonlinear, is tractable analytically using standard technics.
[3] R. Piessens, The Hankel Transform. In Transforms and Applications Handbook, CRC Press, 2010.

