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In these notes, we give some technical details regarding the derivation of equations (5) and (9).

I. CLOSURE RELATION FOR THE
INTERFACIAL VELOCITY

Since the Stokes equations are linear, one expects a lin-
ear relationship between the interfacial velocity and the
concentration [1, 2]. In the Stokes regime, the velocity
field v(x, z) = vx(x, z)ex+vz(x, z)ez obeys the equations

η∇2v = ∇p , and ∇ · v = 0 , (1)

together with the boundary conditions (BCs)

vz
∣∣
z=0

= 0 , (2a)

η (∂zvx + ∂xvz)
∣∣∣
z=0

= −γ1
∂xΓ

Γ0
. (2b)

Define the Fourier transform of f(x) as

f̃(q) = F [f(x)] =

∫ ∞
−∞

f(x)e−iqxdx ,

the Stokes equations can be rewritten as

η
(
−q2ṽx + ∂2z ṽx

)
= iqp̃ , (3a)

η
(
−q2ṽz + ∂2z ṽz

)
= ∂z p̃ , (3b)

iqṽx + ∂z ṽz = 0 , (3c)

and the BCs at the free interface now read

ṽz(q, 0) = 0 , (4a)

∂z ṽx
∣∣
z=0

= −iq γ1
ηΓ0

Γ̃(q) . (4b)

After some algebra, one can show that eqn (3) can be
recast in a single equation for the vertical component of
the velocity (

∂4z − 2q2∂z + q4
)
ṽz = 0 .

The liquid being confined to the half-space z < 0, the
solution that satisfies the BC (4a) is

ṽz(q, z) = Bze|q|z .

According to eqn (3c), the horizontal component is ob-
tained as

ṽx(q, z) =
iB

q
(1 + |q|z) e|q|z .

Enforcing the Marangoni BC (4b), one finally gets

B = − γ1
2ηΓ0

q2

|q|
Γ̃(q) .

In particular, the interfacial velocity is obtained in
Fourier representation

ṽx(q, 0) = −i γ1
2ηΓ0

sgn(q)Γ̃(q) . (5)

The inverse transform then involves a convolution prod-
uct

vx(x, 0) =
γ1

2ηΓ0

∫ ∞
−∞

dx′Γ(x′)K(x− x′) ,

with K(x) = F−1[−isgn(q)] = 1/(πx), so that one even-
tually gets the desired relation

vx(x, 0) =
γ1

2ηΓ0

∫ ∞
−∞

dx′
Γ(x′)

π(x− x′)
. (6)

Note that the improper integral is understood in the
sense of the principal value.

II. PROPERTIES OF HILBERT TRANSFORMS

The Hilbert transform of a function f(x) is defined
as [3]

H[f(x)] =
1

π
−
∫ ∞
−∞

f(y)

x− y
dy , (7)

where the dashed integral refers to the Cauchy princi-
pal value. The Hilbert transform satisfies the following
properties [3]

H [∂xf ] = ∂xH[f(x)] , (8a)

H [xf(x)] = xH[f(x)]−
∫ ∞
−∞

f(u)du . (8b)

In the following, we shall consider the function g(x) de-
fined as

g(x) =

{√
ξ2 − x2 for |x| < ξ ,

0 otherwise .

Taking the Hilbert transform, we therefore get

H[g(x)] =

{
x for |x| < ξ ,

x− sgn(x)
√
x2 − ξ2 otherwise.

Moreover, according to Eq. (8b), we also have

H[xg(x)] =

{
x2 − ξ2

2 for |x| < ξ ,

x2 − ξ2

2 − |x|
√
x2 − ξ2 otherwise.
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III. DERIVATION OF THE TIME EVOLUTION
EQUATIONS FOR A(t) AND ξ(t).

In rescales variables, the concentration of surfactants
obeys the following nonlinear equation

∂tΓ + ∂x (ΓH[Γ]) = −αΓ . (9)

Inspired by previous work [1, 2], we consider a semi-circle
distribution

Γ(x, t) = A(t)
√
ξ2(t)− x2 , (10)

for |x| < ξ(t), and Γ(x, t) = 0 otherwise. Here, A(t) and
ξ(t) are two positive functions. We get for this particular
choice the relation

Γ(x, t)H[Γ(x, t)] = A(t)xΓ(x, t) .

The derivation then consists in taking the Hilbert
transform of eqn (9) with Γ(x, t) defined by (10). We
first proceed in the domain |x| < ξ(t). Making use of

eqn (8a), its is straightforward to obtain

x
(
Ȧ+ 2A2 + αA

)
= 0 .

But this equation has to be satisfied for all |x| < ξ(t):
the term between parenthesis must necessarily vanish,
leading to the first equation

Ȧ+ 2A2 + αA = 0 . (11)

We proceed in the same manner for |x| > ξ(t): al-
though the algebra is slightly more tedious, the Hilbert
transform of eqn (9) now leads to(

x2 − ξ2
) (
Ȧ+ 2A2 + αA

)
= Aξ

(
ξ̇ −Aξ

)
,

so that we get the second equation

ξ̇ = Aξ . (12)

We therefore end up with a set of ordinary differential
eqns (11)–(12) that, even though nonlinear, is tractable
analytically using standard technics.
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