XRD patterns of Co-based metal glycerate nanospheres before and after "water treatment"

Fig. S1. XRD patterns of (a) Co glycerate, (b) Ni-Co glycerate, and (c) Zn-Co glycerate nanospheres with increasing "water treatment" time.

SEM and TEM images of the metal cobaltite (MCo₂O₄) nanospheres

Fig. S2. Low- and high-magnification SEM images and the corresponding TEM images of (a, b, c) Co_3O_4 (d, e, f) $NiCo_2O_4$, and (g, h, i) $ZnCo_2O_4$ nanospheres obtained from the direct calcination of the Co, Ni-Co and Zn-Co glycerate nanospheres, respectively, in air at 350 °C.

Comments on Fig. S2:

Fig. S2a and b show the low and high-magnification SEM images of the Co₃O₄ nanospheres achieved by direct calcination of the Co-glycerate spheres in air at 350 °C, respectively. The highly uniform spherical morphology of the Co-glycerate precursor is well-preserved after the conversion to Co₃O₄ nanospheres. However, the diameters of these spheres are decreased to 300-500 nm due to the thermal shrinkage resulting from the release of H₂O and CO₂ during calcination (Fig. S2a). Furthermore, the surface of the synthesized Co_3O_4 nanospheres is rough, indicating that they are assembled by small nanoparticles, as evident in Fig. S2b. The TEM image in Fig. S2c reveals that the Co₃O₄ nanospheres exhibit a yolk-shell structure, with the thickness of the shell estimated to be around 100 nm. The shell itself is composed of many small nanocrystals with numerous interparticle pores distributed throughout the shell. In comparison, the synthesized NiCo₂O₄ nanospheres are slightly larger in size with diameters of around 500-700 nm (Fig. S2d) and they are also assembled of small nanoparticles, similar to Co₃O₄ (Fig. S2e). However, unlike the Co₃O₄ nanospheres, the NiCo₂O₄ nanospheres do not possess a yolk-shell structure, but rather a solid spherical structure (Fig. S2f). From Fig. S2g, it can be observed that the obtained ZnCo₂O₄ nanospheres exhibit diameters in the range of 500-650 nm and they are also assembled of small nanoparticles with some spheres being partly destroyed due to the large thermal shrinkage (Fig. S2h). Based on Fig. S2i, it is evident that the ZnCo₂O₄ nanospheres possess a yolk-shell structure, consisting of a solid yolk and a hollow shell. The creation of such a yolk-shell structure may be explained as follows. In the initial heating period during calcination, there exists a high temperature gradient along the radial direction of the solid spheres. This leads to non-homogeneous and non-equilibrium heating, where two opposing forces the cohesive (σ_{co}) and adhesive forces (σ_{ad}) exert at the interface between the ZnCo₂O₄ shell and yolk.¹ If the σ_{co} is larger than σ_{ad} in a large temperature gradient, the inner yolk will separate from the pre-formed shell with continuous heating, leading to the formation of a unique yolk-shell structure.

XRD patterns of the metal cobaltite (MCo₂O₄) nanospheres and 2D nanosheets

Fig. S3. (a) XRD patterns of (i) Co_3O_4 , (ii) NiCo₂O₄, and ZnCo₂O₄ nanospheres obtained from the direct calcination of the Co, Ni-Co and Zn-Co glycerate nanospheres, respectively, in air at 350 °C. (b) XRD patterns of (i) Co_3O_4 , (ii) NiCo₂O₄, and (iii) ZnCo₂O₄ nanosheets achieved by calcination of the Co, Ni-Co and Zn-Co glycerate/hydroxide nanosheets, respectively, in air at 260 °C.

EDS mapping of the as-prepared 2D mesoporous metal cobaltite (MCo₂O₄) nanosheets

Fig. S4. (a) High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image of a single Co_3O_4 nanosheet and the corresponding elemental mapping for (b) Co and (c) O. (d) HAADF-STEM image of a single NiCo₂O₄ nanosheet and the corresponding elemental mapping for (e) Co, (f) O and (g) Ni. (h) HAADF-STEM image of a single ZnCo₂O₄ nanosheet and the corresponding elemental mapping for (i) Co, (j) O and (k) Zn.

High-magnification TEM and HRTEM images of the 2D mesoporous metal cobaltite (MCo₂O₄) nanosheets

Fig. S5. High-magnification TEM and HRTEM images of the as-prepared 2D mesoporous: Co_3O_4 nanosheets (a, d), NiCo₂O₄ nanosheets (b, e), and ZnCo₂O₄ nanosheets (c, f).

N₂ adsorption-desorption isotherms and Barrett-Joyner-Halenda (BJH) pore size distribution curves of the metal cobaltite (MCo₂O₄) nanospheres

Fig. S6. Nitrogen (N₂) adsorption-desorption isotherms and Barrett-Joyner-Halenda (BJH) pore-size distribution curves of (a, d) Co_3O_4 (b, e) NiCo₂O₄, and (c, f) ZnCo₂O₄ nanospheres obtained from the direct calcination of the Co, Ni-Co and Zn-Co glycerate nanospheres, respectively, in air at 350 °C.

Comparison of synthetic conditions and textural characteristics of the as-prepared 2D mesoporous metal cobaltite (MCo₂O₄) nanosheets with previous reports

Table S1. Comparison of the synthetic conditions and textural characteristics of the as-prepared 2D mesoporous metal cobaltite nanosheets with previously reported 2D metal cobaltite nanostructures.

Sample	Synthesis	Calcination	Surface area	Pore volume	Ref.
	method	temperature (°)	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	
Mesoporous 2D	Self-	260	155	0.452	This work
NiCo ₂ O ₄ NSs	deconstruction/re				
	construction				
Mesoporous	Solution-phase	320	113	N/A	2
NiCo ₂ O ₄ NSs					
Mesoporous	Solvothermal	350	124	0.203	3
NiCo2O4 NSs					
Hierarchical	Solution-phase	300	58.2	N/A	4
NiCo ₂ O ₄ NSs					
Hierarchical	Solvothermal	250	127	N/A	5
NiCo ₂ O ₄ NSs					
Mesoporous	Microwave	300	111	0.303	6
NiCo ₂ O ₄ NSs					
Ultrathin	Microwave	350	126	0.592	7
NiCo ₂ O ₄ NSs					
NiCo ₂ O ₄ NSs	Hydrothermal	350	28.2	0.110	8
Mesoporous 2D	Self-	260	175	0.785	This work
Co ₃ O ₄ NSs	deconstruction/re				
	construction				
Porous Co ₃ O ₄	Hydrothermal	300	69.7	N/A	9
NSs					
Porous Co ₃ O ₄	Topological	600	87.0	0.235	10
NSs	transformation				
Ultrathin	Hydrothermal	300	68.7	N/A	11
Co ₃ O ₄ NSs					
Mesoporous	Electrodeposition	250	56.1	N/A	12
Co ₃ O ₄ NSs					
Mesoporous	Chemical co-	450	29.4	0.335	13
Co ₃ O ₄ NSs	precipitation				
Mesoporous 2D	Self-	260	171	0.867	This work
ZnCo ₂ O ₄ NSs	deconstruction/re				
	construction				
Mesoporous	Hydrothermal	350	63.4	N/A	14
ZnCo ₂ O ₄ NSs					

Note: NSs= nanosheets

Comparison of Co 2p, Ni 2p, and Zn 2p XPS binding energies of the as-prepared 2D mesoporous metal cobaltite (MCo₂O₄) nanosheets with previous literatures

Ref.	Sample	BE (Co2p _{3/2})	BE (Co2p _{1/2})	BE (Ni2p _{3/2})	BE (Ni2p _{1/2})	BE (Zn2p _{3/2})	BE (Zn2p _{1/2})
		(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
This	NiCo ₂ O ₄	781.8 (Co ²⁺)	797.1 (Co ²⁺)	854.2 (Ni ²⁺)	871.8 (Ni ²⁺)	-	-
work	NSs	780.1(Co ³⁺)	795.2 (Co ³⁺)	855.8 (Ni ³⁺)	873.3 (Ni ³⁺)		
15	NiCo ₂ O ₄ NWs	780.8 (Co ²⁺)	795.8 (Co ²⁺)	854.1 (Ni ²⁺)	871.9 (Ni ²⁺)	-	-
		779.4 (Co ³⁺)	794.7 (Co ³⁺)	855.8 (Ni ³⁺)	873.6 (Ni ³⁺)		
16	NiCo ₂ O ₄ NRs	781.0 (Co ²⁺)	796.4 (Co ²⁺)	854.1 (Ni ²⁺)	871.9 (Ni ²⁺)	-	-
		779.3 (Co ³⁺)	794.5 (Co ³⁺)	855.8 (Ni ³⁺)	873.8 (Ni ³⁺)		
This	Co ₃ O ₄	781.0 (Co ²⁺)	796.4 (Co ²⁺)	_	_	-	-
work	NSs	779.3 (Co ³⁺)	794.5 (Co ³⁺)				
17	Co ₃ O ₄	781.4 (Co ²⁺)	796.9 (Co ²⁺)	-	-	-	-
		779.2 (Co ³⁺)	794.3(Co ³⁺)				
18	Co ₃ O ₄	781.4 (Co ²⁺)	796.8 (Co ²⁺)	-	-	-	-
	NPs	779.7 (Co ³⁺)	794.8(Co ³⁺)				
This	ZnCo ₂ O ₄ NSs	781.4 (Co ²⁺)	796.8 (Co ²⁺)	-	-	1021.2 (Zn ²⁺)	1044.5 (Zn ²⁺)
work		780.2 (Co ³⁺)	795.2 (Co ³⁺)				
16	ZnCo ₂ O ₄ NRs	781.0 (Co ²⁺)	796.4 (Co ²⁺)	-	-	-	-
		780.1 (Co ³⁺)	795.5 (Co ³⁺)				
19	ZnCo ₂ O ₄	780.2 (Co ³⁺)	794.5 (Co ³⁺)	-	-	1022.5 (Zn ²⁺)	1045.7 (Zn ²⁺)
	NFs						

Table S2. Binding energy values of Co 2p, Ni 2p, and Zn 2p peaks for metal cobaltites found in literatures.

Notes: NSs= nanosheets; NWs= nanowires; NFs= nanofibers; NPs= nanoparticles; NRs= nanorods

Comparison of the electrochemical performance of the metal cobaltite (MCo₂O₄) nanospheres with the 2D mesoporous MCo₂O₄ nanosheets

Fig. S7. Comparison of CV curves between (a) Co_3O_4 nanospheres and 2D mesoporous Co_3O_4 nanosheets and (b) $ZnCo_2O_4$ nanospheres and 2D mesoporous $ZnCo_2O_4$ nanosheets at a fixed scan rate of 20 mV s⁻¹. CV curves of (c) Co_3O_4 nanospheres, (d) NiCo_2O_4 nanospheres, (e) $ZnCo_2O_4$ nanospheres, (f) 2D mesoporous Co_3O_4 nanosheets, and (g) 2D mesoporous $ZnCo_2O_4$ nanosheets at various scan rates from 5-100 mV s⁻¹. (h) Scan rate dependence of specific capacitance for porous Co_3O_4 nanospheres and 2D mesoporous Co_3O_4 nanosheets. (i) Scan rate dependence of specific capacitance for $ZnCo_2O_4$ nanospheres and 2D mesoporous $ZnCo_2O_4$ nanosheets.

Comments on Fig. S7:

Fig. S7a and b compare the CV curves of the Co₃O₄ nanospheres and 2D mesoporous Co₃O₄ nanosheets and CV curves of the ZnCo₂O₄ nanospheres and 2D mesoporous ZnCo₂O₄ nanosheets, respectively, at a fixed scan rate of 20 mV s⁻¹. Evidently, both 2D mesoporous Co₃O₄ and ZnCo₂O₄ nanosheets exhibit higher current densities and CV curve areas than their spherical counterparts, thus indicating their higher electrochemical activities. The CV curves of the Co₃O₄ and NiCo₂O₄ nanospheres at all scan rates do not show clear presence of the redox peaks (Fig. S7c and d), suggesting their poor electrochemical activities, which may be due to the kinetically slow surface reactions contributed by the low surface area (10-20 m² g⁻¹) and small pore volume (0.057-0.127 cm³ g⁻¹).²⁰ In contrast, the CV curve of the ZnCo₂O₄ nanospheres show the existence of redox peaks at a scan rate of 5 mV s⁻¹, which originate from the reversible Faradaic redox reactions related to M-O/M-O-OH (M refers to Co and Zn ions) associated with OH- anions, thus indicating their pseudocapacitive characteristics (Fig. S7e).²¹ The cathodic peak is shifted to lower potential with increasing scan rate, while the anodic peak is shifted to higher potential, but the potential window is not wide enough to show this shift. Fig. S7f depicts the CV curves of the 2D mesoporous Co₃O₄ nanosheets at various scan rates from 5 to 100 mV s⁻¹. At a low scan rate (5 mV s⁻¹), a pair of redox peaks can be observed from the CV curve of the mesoporous Co₃O₄ nanosheets which indicates their pseudocapacitive behavior. The presence of this pair of redox peaks can be attributed to the Faradaic redox reactions of Co_3O_4 in the KOH electrolyte based on the following equations²².

 $Co_{3}O_{4} + OH^{-} + H_{2}O \leftrightarrow 3CoOOH + e^{-}$ (1) $CoOOH + OH \leftrightarrow CoO_{2} + H_{2}O + e^{-}$ (2)

The increase in scan rate does not affect the shape of the CV curves significantly, but simply shifts the cathodic peak to lower potential, as a result of the polarization of the electrode at higher scan rates.¹⁷ At higher scan rates, the voltage window is not wide enough to show the shift of the anodic peak to higher potential. The CV curves of the 2D ZnCo₂O₄ nanosheets are depicted in **Fig. S7g**. These curves show a similar trend as that of NiCo₂O₄ nanosheets. From **Fig. S7h**, it can be observed that the 2D mesoporous Co₃O₄ nanosheets exhibit specific capacitances of 69.0, 27.0, 18.0, 13.0, 11.0, 10.0 F g⁻¹ at scan rates of 5, 20, 40, 60, 80, and 100 mV s⁻¹, respectively. Comparatively, the Co₃O₄ nanosheets display specific capacitances of the 2D ZnCo₂O₄ nanosheets are 310, 164, 119, 97, 75, and 55 F g⁻¹ at scan rates of 5, 20, 40, 60, 80 and 100 mV s⁻¹, respectively, as shown in **Fig. S7i**. In comparison, the specific capacitances of the ZnCo₂O₄ nanosheets are 37.0, 21.0, 16.0, 14.0, 12.0, and 11.0 F g⁻¹, respectively, which are considerably lower (5-10 times lower) than those of the 2D mesoporous ZnCo₂O₄ nanosheets.

These results indicate the superior electrochemical performance of the 2D mesoporous metal cobaltite nanosheets relative to the metal cobaltite nanospheres. Compared to NiCo₂O₄, the 2D mesoporous ZnCo₂O₄ nanosheets display higher specific capacitance at lower scan rates; however the specific capacitance fades much more rapidly with a relatively low retention rate of 38% with the increase in scan rate from 5 to 40 mV s⁻¹ (**Fig. S7i**), while the 2D mesoporous Co₃O₄ nanosheets show the lowest capacitive performance among the three samples (**Fig. S7h**). This is because of the richer redox reactions (contributed by both Co²⁺ and Ni²⁺/Zn²⁺ ions) and higher electronic conductivity of MCo₂O₄ compared to Co₃O₄ by several order of magnitudes.²³

Comparison of the electrochemical performance of the assembled 2D NiCo₂O₄ nanosheets//GO asymmetric supercapacitor (ASC) with previously reported ASCs

Table S3. Comparison of the electrochemical performance of the assembled 2D NiCo ₂ O ₄ nanosheets//GO
asymmetric supercapacitor (ASC) with previously reported ASCs.

ASC	Electrolyte	Operating	Energy	Power	Cycling	Ref
		voltage (V)	density $(W + kg^{-1})$	density $(W k \sigma^{-1})$	Performance (retention)	
$2D \operatorname{NiC}_{2} O \operatorname{NS}_{2}//CO$	2 M KOU	1.6	<u>(vv ii kg)</u> 28 5	<u>(vv kg)</u> 200	$\frac{01\% \text{ after } 2000}{2000}$	This work
$2D \ln C_{2}O_{4} \ln S_{7}/OO$	5 WI KUII	1.0	38.3	299	91/0 after 2000 evoles at 5 A σ^{-1}	THIS WOLK
Porous NiCo O //AC		1 /	147	175	25% after 5000	24
FOIDUS INICO2O4//AC		1.4	14./	175	os /o alter 5000	
					1.5 A g^{-1}	
Mesoporous	6 M KOH	1.6	29.8	159.4	103% after 5000	25
NiCo ₂ O ₄ //AC					cycles at 2 A g ⁻¹	
Hierarchical NiCo ₂ O ₄	2 M KOH	1.4	21.4	350	95.6% after 1000	26
//AC					cycles at	
					1 A g ⁻¹	
NiCo ₂ O ₄ NSs-	6 M KOH	1.25	19.8	~150	~100% after	27
CNTs//AC					1000 cycles at	
					2 A g ⁻¹	
NiCo ₂ O ₄ spheres-	2 M KOH	1.5	29.0	~125	101.9% after	28
CQDs//AC					5000 cycles at 3	
					A g-1	
NiCo2O4-RGO//AC	2 M KOH	1.3	23.3	324.9	83% after 2500	29
					cycles at 2 A g ⁻¹	
NiCo ₂ O ₄ -MnO ₂ //AG	2 M KOH	1.6	9.40	~180	89.7% after 3000	30
2 . 2					cycles at 5 A g ⁻¹	
NiCo ₂ O ₄ -GO//AC	6 M KOH	1.4	19.5	~120	~97% after	31
					10000 cycles at	
					10 Å g ⁻¹	
ZnCo ₂ O ₄ MS//AC	PVA/KOH	1.4	22.0	~39.0	76.68% after	20
	gel				1000 cycles at	
	-				0.5 A g ⁻¹	
ZnCo ₂ O ₄ NWs//AC	6 M KOH	1.5	35.6	187.6	94% after 3000	32
					cycles at 3 A g ⁻¹	
Co ₃ O ₄ NSs-RGO//AC	2 M KOH	1.45	13.4	~200	89% after 1000	33
					cycles at 1 A g ⁻¹	
FeCo ₂ O ₄ NWs//AC	3 M KOH	1.5	23.0	236	97% after 1500	34
					cycles at 40	
					mV s ⁻¹	
NiO nanopetals//AC	2 M KOH	1.7	14.6	118	91.3% after	35
					10000 cycles at	
					1 A g ⁻¹	

Notes: NSs= nanosheets; MS= microspheres; NWs= nanowires; AC= activated carbon; AG= activated graphene; GO= graphene oxide; RGO= reduced graphene oxide; CNTs= carbon nanotubes; CQDs= carbon quantum dots.

Additional electrochemical data of the assembled 2D NiCo2O4 nanosheets//GO ASC

Fig. S8. (a) CV curves of the graphene oxide (GO) electrode at various scan rates from 5-100 mV s⁻¹. (b) Comparison of the electrochemical performance of the assembled NiCo₂O₄ nanosheets//GO ASC with previously reported ASCs based on metal cobaltites and carbon materials. (c) Cycling performance of the assembled 2D NiCo₂O₄ nanosheets//GO ASC during 2000 cycles at a current density of 5 A g⁻¹.

Comments on Fig. S8:

Fig. S8a displays the CV curves of the graphene oxide (GO) electrode at various scan rates ranging from 5 to 100 mV s⁻¹ within the potential window of -1.0 to -0.1 V *vs.* Ag/AgCl. The quasi-rectangular shape of the CV curves indicates the electrical double-layer capacitive behaviour of the GO electrode. The area of the CV curve increases with increasing scan rate, which suggests good reversibility and rate capability.³⁶⁻³⁸ The corresponding specific capacitance values of the GO electrode are 118, 80, 68, 63, 59, and 56 F g⁻¹ at scan rates of 5, 20, 40, 60, 80 and 100 mV s⁻¹, respectively (**Fig. 8c**), corresponding to a capacitance retention of 47.4% which is considerably lower than the value obtained for 2D mesoporous NiCo₂O₄ nanosheets.

SEM images of the NiCo₂O₄ nanosheet electrode after cycling

Fig. S9. (a) Low and (b) high-magnification SEM images of the $NiCo_2O_4$ nanosheet electrode after 2000 cycles at 5 A g⁻¹.

References

- J. Li, J. Wang, X. Liang, Z. Zhang, H. Liu, Y. Qian and S. Xiong, ACS Appl. Mater. Interfaces, 2014, 6, 24-30.
- 2. G. Zhang and X. W. Lou, *Adv. Mater.*, 2013, **25**, 976-979.
- 3. C.-T. Hsu and C.-C. Hu, J. Power Sources, 2013, 242, 662-671.
- 4. G. Gao, H. B. Wu, S. Ding, L.-M. Liu and X. W. Lou, *Small*, 2015, **11**, 804-808.
- B. Sun, X. Huang, S. Chen, Y. Zhao, J. Zhang, P. Munroe and G. Wang, *J. Mater. Chem. A*, 2014, 2, 12053-12059.
- S. Khalid, C. Cao, A. Ahmad, L. Wang, M. Tanveer, I. Aslam, M. Tahir, F. Idrees and Y. Zhu, *RSC Adv.*, 2015, 5, 33146-33154.
- 7. Y. Zhu and C. Cao, *Electrochim. Acta*, 2015, **176**, 141-148.
- 8. H. Wang and X. Wang, ACS Appl. Mater. Interfaces, 2013, 5, 6255-6260.
- 9. F. Zhan, B. Geng and Y. Guo, *Chem. Eur. J.*, 2009, **15**, 6169-6174.
- J. Zhu, L. Bai, Y. Sun, X. Zhang, Q. Li, B. Cao, W. Yan and Y. Xie, *Nanoscale*, 2013, 5, 5241-5246.
- 11. Z. Zhang, Z. Wen, Z. Ye and L. Zhu, *RSC Adv.*, 2015, **5**, 59976-59982.
- 12. Y. Zheng, W. Wang, D. Jiang, L. Zhang, X. Li and Z. Wang, J. Mater. Chem. A, 2016, 4, 105-112.
- 13. S. Deng, X. Liu, N. Chen, D. Deng, X. Xiao and Y. Wang, Sens. Actuator B, 2016, 233, 615-623.
- 14. F. Bao, X. Wang, X. Zhao, Y. Wang, Y. Ji, H. Zhang and X. Liu, RSC Adv., 2014, 4, 2393-2397.
- 15. J. Wang, S. Fan, Y. Luan, J. Tang, Z. Jin, M. Yang and Y. Lu, *RSC Adv.*, 2015, **5**, 2405-2410.
- 16. S. G. Mohamed, Y.-Q. Tsai, C.-J. Chen, Y.-T. Tsai, T.-F. Hung, W.-S. Chang and R.-S. Liu, *ACS Appl. Mater. Interfaces*, 2015, **7**, 12038-12046.
- C. Zhang, J. Xiao, X. Lv, L. Qian, S. Yuan, S. Wang and P. Lei, *J. Mater. Chem. A*, 2016, 4, 16516-16523.
- 18. W. Guo, Y. E, I. Gao, L. Fan and S. Yang, *Chem. Commun.*, 2010, 46, 1290-1292.
- 19. W. Luo, X. Hu, Y. Sun and Y. Huang, J. Mater. Chem., 2012, 22, 8916-8921.
- 20. Y. Gai, Y. Shang, L. Gong, L. Su, L. Hao, F. Dong and J. Li, RSC Adv., 2017, 7, 1038-1044.
- G. Q. Zhang, H. B. Wu, H. E. Hoster, M. B. Chan-Park and X. W. Lou, *Energy Environ. Sci.*, 2012, 5, 9453-9456.
- 22. X. Zhou, X. Shen, Z. Xia, Z. Zhang, J. Li, Y. Ma and Y. Qu, *ACS Appl. Mater. Interfaces*, 2015, 7, 20322-20331.
- 23. C. Yuan, H. B. Wu, Y. Xie and X. W. Lou, Angew. Chem. Int. Ed., 2014, 53, 1488-1504.
- 24. R. Ding, L. Qi, M. Jia and H. Wang, *Electrochim. Acta*, 2013, **107**, 494-502.

- M. J. Pang, S. Jiang, G. H. Long, Y. Ji, W. Han, B. Wang, X. L. Liu, Y. L. Xi, F. Z. Xu and G. D. Wei, *RSC Adv.*, 2016, 6, 67839-67848.
- S. Wang, S. Sun, S. Li, F. Gong, Y. Li, Q. Wu, P. Song, S. Fang and P. Wang, *Dalton Trans.*, 2016, 45, 7469-7475.
- 27. F. Cai, Y. Kang, H. Chen, M. Chen and Q. Li, J. Mater. Chem. A, 2014, 2, 11509-11515.
- 28. Y. Zhu, Z. Wu, M. Jing, H. Hou, Y. Yang, Y. Zhang, X. Yang, W. Song, X. Jia and X. Ji, *J. Mater. Chem. A*, 2015, **3**, 866-877.
- 29. X. Wang, W. S. Liu, X. Lu and P. S. Lee, J. Mater. Chem., 2012, 22, 23114-23119.
- M. Kuang, Z. Q. Wen, X. L. Guo, S. M. Zhang and Y. X. Zhang, J. Power Sources, 2014, 270, 426-433.
- H. Wang, C. M. B. Holt, Z. Li, X. Tan, B. S. Amirkhiz, Z. Xu, B. C. Olsen, T. Stephenson and D. Mitlin, *Nano Res.*, 2012, 5, 605-617.
- C. Wu, J. Cai, Q. Zhang, X. Zhou, Y. Zhu, P. K. Shen and K. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 26512-26521.
- 33. C. Yuan, L. Zhang, L. Hou, G. Pang and W.-C. Oh, *RSC Adv.*, 2014, 4, 14408-14413.
- 34. A. Pendashteh, J. Palma, M. Anderson and R. Marcilla, J. Mater. Chem. A, 2015, 3, 16849-16859.
- G. Cheng, Q. Bai, C. Si, W. Yang, C. Dong, H. Wang, Y. Gao and Z. Zhang, *RSC Adv.*, 2015, 5, 15042-15051.
- 36. S. Khalid, C. Cao, L. Wang and Y. Zhu, *Sci. Rep.*, 2016, 6, 22699.
- R. R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J. H. Kim and Y. Yamauchi, *ACS Nano*, 2015, 9, 6288-6296.
- 38. D.-W. Wang, F. Li and H.-M. Cheng, J. Power Sources, 2008, 185, 1563-1568.