Supplementary Information

From Au-rich Core/PtNi-rich Shell to Ni-rich Core/PtAu-rich Shell: an Effective Thermochemical Pathway to Nanoengineering Catalysts for Fuel Cells

Aolin Lu^{a,b}, Zhipeng Wu^b, Binghui Chen^a, Dong-Liang Peng^a, Shan Yan^b, Shiyao Shan^b, Zakiya Skeete^b, Fangfang Chang^b, Yuanzhi Chen^a, Hongfei Zheng^a, Deqian Zeng^a, Lefu Yang^a, Anju Sharma^b, Jin Luo^b, Lichang Wang^c, Valeri Petkov^d, and Chuan-Jian Zhong^b*

a) Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering; and Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China.

b) Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA.

- c) Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA.
- d) Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA.

(* - Corresponding author, email: cjzhong@binghamton.edu)

Additional Experimental Results and Schematic Illustrations:

Scheme S1. A schematic illustration of the processes involved in the formation of Au@PtNi core-shell nanoparticles in the one-pot synthesis route.

Figure S1. (A) TEM image of as synthesized $Pt_{39}Au_{18}Ni_{43}$ core-shell nanoparticles and (B) corresponding histogram of the size distribution.

Figure S2. UV-vis spectrum of as-prepared Pt₃₉Au₁₈Ni₄₃ core-shell nanoparticles dispersed in hexane.

Figure S3. TEM images of as-synthesized $Pt_{32}Ni_{68}$ nanoflowers in two sampling regions.

Figure S4. HR-TEM images of as-synthesized NPs, showing (A) short and (B) long branched Pt₃₇Au₈Ni₅₅.

Figure S5. TEM image of 400 °C/H₂ treated Pt₃₇Au₈Ni₅₅/C catalyst.

Figure S6. (A): HADDF-STEM image showing a sample region with Au-rich core/PtNi rich shell for the nanoparticles (scale bar: 5 nm); (B-C): EDS spectra showing the composition analyses (B) in the core (point 1) which has a composition of $Pt_{46}Au_{39}Ni_{15}$, and (C) in shell zone which has a composition of $Pt_{64}Au_{10}Ni_{25}$ (point 2).

Figure S7. (A): HR-TEM image showing a single particle from a sample of the 260 °C/O₂ treated $Pt_{39}Au_{18}Ni_{43}/C$; (B-C): EDS spectra showing the composition in the core (B) and (C) shell zone.

Figure S8 EDS spectra showing the bulk composition analysis ($Pt_{36}Au_{18}Ni_{46}$) and core point composition analysis ($Pt_{10}Au_5Ni_{85}$) in the red rectangle region of Figure 4A for the Ni-rich core and PtAu-rich shell nanoparticles.

Figure S9. (A) XRD data of 400 °C/H₂ treated (a) $Pt_{34}Au_2Ni_{64}/C$, (b) $Pt_{37}Au_8Ni_{55}/C$, (c) $Pt_{39}Au_{18}Ni_{43}/C$, (d) $Pt_{40}Au_{30}Ni_{30}/C$, (e) $Pt_{56}Au_{44}/C$, and (f) $Pt_{38}Au_{62}/C$. (B) XRD data of (c) as-synthesized, (c-1) 260 °C/O₂, (c-2) 177 °C/O₂, (c-3) 400 °C/H₂ of $Pt_{39}Au_{18}Ni_{43}/C$ (C) the grain sizes calculated from curves in (A), (D) the grain sizes calculated from curves in (B).

Figure S10. (a) TGA curves for (c-1) 260 °C/O₂, (c-2) 177 °C/O₂, and (c-3) 400 °C/H₂ treated Pt₃₉Au₁₈Ni₄₃/C.

Figure S11. (A) CV curves and (B) MOR CV curves of 400 °C/H₂ treated (a) $Pt_{34}Au_2Ni_{64}/C$, (b) $Pt_{37}Au_8Ni_{55}/C$, (d) $Pt_{40}Au_{30}Ni_{30}/C$, (e) $Pt_{56}Au_{44}/C$, and (f) $Pt_{38}Au_{62}/C$ in 0.5 M CH₃OH+0.1 M HClO₄.

Figure S12. CV curves of $Pt_{56}Au_{44}/C$ involves (e-1) 260 °C/O₂ and (e-3) 400 °C/H₂ treatment. Curve (e-4) and (e-5) involves e-3 and e-1 cycling to a higher potential (1.39 V).

Figure S13. MOR curves of $Pt_{56}Au_{44}/C$ in 0.5 M CH₃OH+0.1 M HClO₄ based on (A, B) Pt mass and (C, D) active surface area. (e-1, e-5) 260 °C/O₂ treated with PtAu loading of 25 wt%, (e-3, e-4) 400 °C/H₂ treated with PtAu loading of 27 wt%. (e-4 and e-5: activated with CV cycling to a higher potential).

Figure S14. Comparison of electrochemical active area (ECA) for (c-1) 260 °C/O₂, (c-2) 177 °C/O₂, and (c-3) 400 °C/H₂ treated $Pt_{39}Au_{18}Ni_{43}/C$ and Pt/C c-4 involves 400 °C/H₂ treated $Pt_{39}Au_{18}Ni_{43}/C$ with cycling to higher potential. (1.39 V)

Figure S15. CV curves for (A) Sample c-3, (B) c-4. The total surface concentration of Pt is calculated by integrating the capacity-corrected H₂ underpotential deposition in the range a -0.2 to 0.1 V (Q_{Pt}), which is transferred to cm²_{Pt} by dividing with 210 μ C/cm². The relative concentration of Au is calculated by integrating the capacity-corrected Au oxide formation in the range of 0.65 to 1.05 V (Q_{Au}), which is converted to cm²_{Au} by dividing with 340 μ C/cm². In this sample, the measured percentage of Pt, Pt/(Pt+Au) was 55% and 60% for Sample c-3 and c-4.

Figure S16. The peak potential in the forward sweep vs. Ni% for the 400 °C/H₂ treated $Pt_{40}Au_xNi_{-60-x}/C$.

Figure S17. The ratio of forward (J_f) and backward (J_b) peak current for (c-1) 260 °C/O₂, (c-2) 177 °C/O₂, and (c-3) 400 °C/H₂ treated Pt₃₉Au₁₈Ni₄₃/C and Pt/C. c-4 involves 400 °C/H₂ treated Pt₃₉Au₁₈Ni₄₃/C with cycling to higher potential (1.39 V).

Figure S18. MA and SA at 0.6 V in forward sweeps for (e-1) 260 °C/O₂ and (e-3, e-4) 400 °C/H₂ treated $Pt_{56}Au_{44}/C$. ((e-4): activated with CV cycling to a higher potential)

	<u> </u>				J
catalysts	MA ratio of catalyst vs. Pt/C	SA ratio of catalyst vs. Pt/C	$J_{\rm f}/J_{\rm b}$	electrolyte	References
Pt ₅₀ Au ₅₀ particles	-	2.2	~1.1	0.1 M HClO ₄	[6]
PtNi ribbons	1.5	4	1.14	$0.5 \ M \ H_2 SO_4$	[17]
PtNi particles	1.24	1.6	~1.1	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	[18]
PtAu nanotubes	1.53	3.33	~1	$0.5 \text{ M} \text{H}_2\text{SO}_4$	[8]
PtZn cubics	-	1.23	1.8	$0.1 \ M \ H_2 SO_4$	[64]
PtCu hollow NPs	3.73	4.46	~1	$0.5 \ M \ H_2 SO_4$	[65]
Pt ₃₉ Au ₁₈ Ni ₄₃ /C	2.5	3.92	1.91	0.1M HClO ₄	this work

Table S1. Comparison of electrocatalytic MOR activities (optimal) for Pt₃₉Au₁₈Ni₄₃/C and other catalysts reported.

XPS peak	Sample c-1	Sample c-2	Sample c-3	Sample c
Ni 2p _{3/2} (I) (BC)	854.00	853.50	853.10	853.39
Ni 2p _{3/2} (I) (AC)	853.83	853.40	853.22	-
Ni 2p _{3/2} (II) (BC)	856.10	856.10	856.50	856.35
Ni 2p _{3/2} (II) (AC)	856.87	856.00	855.19	-
Pt ⁰ 4f _{7/2} (BC)	71.65	71.68	71.70	71.80
Pt ⁰ 4f _{7/2} (AC)	71.75	71.70	71.82	-
Pt ⁰ 4f _{5/2} (BC)	74.96	74.98	75.05	75.08
$Pt^{0} 4f_{5/2}(AC)$	75.05	75.00	75.21	-
Au 4f _{7/2} (BC)	84.38	84.35	84.33	84.52
Au 4f _{7/2} (AC)	84.62	84.52	84.52	-
Au 4f _{5/2} (BC)	88.05	88.06	88.04	88.24
Au 4f _{5/2} (AC)	88.19	88.16	88.17	-

Table S2. XPS peak positions (unit: eV) for (c) as-synthesized, (c-1) 260 °C/O₂, (c-2) 177 °C/O₂, and (c-3) 400 °C/H₂ treated $Pt_{39}Au_{18}Ni_{43}/C$ in terms of the deconvoluted XPS peaks, including Ni $2p_{3/2}(I)$ and $2p_{3/2}(I)$, Pt^0 $4f_{7/2}$, and $4f_{5/2}$, and Au $4f_{7/2}$ and $4f_{5/2}$, before (BC) and after (AC) potential cycling

Figure S19. (A) Mass activity at 0.69 V and (B) the ratio of forward and backward peak $(J_{f'}J_b)$ current vs. cycle number for (c-1) 260 °C/O₂, (c-2) 177 °C/O₂, (c-3) 400 °C/H₂ treated Pt₃₉Au₁₈Ni₄₃/C. c-4 involves 400 °C/H₂ treated Pt₃₉Au₁₈Ni₄₃/C after potential cycling to 1.39 V.

Scheme S2. Schematic illustrations of the reconstruction of $Pt_{39}Au_{18}Ni_{43}$ core-shell NPs in terms of the relative surface enrichment and alloying by thermal treatment under O_2 .