Supporting Information for

Engineered Sub-100 nm Mo_(1-x)W_xSe₂ Crystals for Efficient

Hydrogen Evolution Catalysis

Minghao Zhuang¹, Li-Yong Gan²*, Mingchu Zou³, Yubing Dou¹, Xuewu Ou¹, Zhenjing Liu¹, Yao Ding¹, Irfan Haider Abidi¹, Abhishek Tyagi¹, Mahsa Jalali¹, Jiawen You¹, Anyuan Cao³ and Zhengtang Luo¹*

 ¹Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
²School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641, China
³Department of Materials Science and Engineering, College of Engineering, Peking

> University, Beijing, 100871, China E-mail: ganly@scut.edu.cn, keztluo@ust.hk

Figure S1. TEM results of $Mo_{(1-x)}W_xSe_2$ crystals on MWCNT. a, e, i, m, q, u, y) Low-resolution TEM image of $Mo_{(1-x)}W_xSe_2$ nanocrystals on MWCNT with x of 0, 0.07, 0.13, 0.21, 0.52, 0.87 and 1, respectively. b, f, j, n, r, v, z) corresponding close-up TEM images of $Mo_{(1-x)}W_xSe_2$ nanocrystals grown on MWCNT. The nanocrystals are pointed out by red arrows. c, g, k, o, s, w, aa) High-resolution TEM (HRTEM) images of the basal plane of corresponding $Mo_{(1-x)}W_xSe_2$ nanocrystals. d, h, l, p, t, x, ab) the FFT pattern of single-crystalline $Mo_{(1-x)}W_xSe_2$ nanocrystals.

Figure S2. a) XRD and b) XPS spectra of $Mo_{(1-x)}W_xSe_2/N$ -MWCNT with various W composition *x* from 0 to 1.

Figure S3. Raman spectra of $Mo_{(1-x)}W_xSe_2/N$ -MWCNT with various W composition *x*. a) Raman spectra of $Mo_{(1-x)}W_xSe_2/N$ -MWCNT with *x* from 0 to 1. The A_{1g} peak shift is guided by dotted line, while the D and G peaks of reduced graphene oxide keep at the same position. b) Plots of A_{1g} frequencies versus W composition *x*, the blue dots represent experimental data and the red line as the fitting trend. The excitation laser wavelength is 514 nm and all the spectra are calibrated with the 520 cm⁻¹ Raman peak from pure SiO₂/Si substrate.

Figure S4. Density of state results of $Mo_{(1-x)}W_xSe_2$ with various number of W atom doping. a) Total density of state results of crystals with different W concentration. b) The independent density of state curves of W atom in all crystals.

Figure S5. Density Functional Theory (DFT) calculation results. a) Bandgap E_g values of $Mo_{(1-x)}W_xSe_2$ crystals as a function of *x*. b) Structural models of $Mo_{(1-x)}W_xSe_2$ crystals with the adsorbed hydrogen atoms. The grey, red, green and white spheres represent Mo, W, Se and the adsorbed hydrogen atoms, respectively. c) Calculated Gibbs free energy diagram for HER on $Mo_{(1-x)}W_xSe_2$ basal planes with W composition *x* from 0 to 1.

Figure S6. Electrochemical properties of Mo_{0.87}**W**_{0.13}**Se**₂/**N-MWCNT catalyst. a)** Cyclic voltammograms within the range of non-faradaic reactions. **b)** Variation of double-layer charging currents at 0.15 V as a function of voltage scan rate. Symbols and solid line are experimental data from c and the linear fitting. **c)** Nyquist plots of various catalysts loaded electrodes at the overpotential of 150 mV. **d)** Polarization curves of Mo_{0.87}W_{0.13}Se₂/N-MWCNT after 1000 and 2000 cycles. Inset is the time dependence of cathodic current density during electrolysis at the overpotentials of 100 mV and 140 mV, respectively. *Noted here the Mo*_{0.87}*W*_{0.13}*Se*₂*/N-MWCNT mass loading in d) is 2 mg cm*⁻², *more than the loading applied in array comparison, however it still exhibited high durability in long term testing, indicating that the Mo*_{0.87}*W*_{0.13}*Se*₂*/N-MWCNT could be promising in practical applications*.

Figure S7. Nyquist plots of $Mo_{(1-x)}W_xSe_2/N$ -MWCNT catalysts loaded electrodes at the overpotential of 150 mV with different *x* from 0 to 1 in the same condition.

Figure S8. Nyquist plots of bulk $Mo_{0.87}W_{0.13}Se_2$ and $Mo_{0.87}W_{0.13}Se_2/N$ -MWCNT catalysts loaded electrodes at the overpotential of 150 mV in the same condition.

Figure S9. Cyclic voltammograms (CV) within the range of non-faradaic reactions of $Mo_{(1-x)}W_xSe_2/N$ -MWCNT with various W composition *x*, scan rate is from 5 to 200 mV, and corresponding variation of double-layer charging currents at 0.15 V as a function of voltage scan rate. Symbols and solid lines are experimental data and linear fitting, respectively.

Figure S10. SEM images and EDS mapping results of carbon bar (counter electrode). a) photograph of carbon bar used as counter electrode in this work. **b)** SEM image of the carbon bar surface. Followed by **c)** mixed elemental mapping, **d)** carbon elemental mapping, **e)** oxygen elemental mapping and **f)** elemental percentage spectrum of the surface of carbon bar, C atom% is 93.7% and O atom% is 6.3%. **g)** SEM image of the cross-section of carbon bar. Followed by **h)** mixed elemental mapping, **i)** carbon elemental mapping, **j)** oxygen elemental mapping and **k)** elemental percentage spectrum of the cross-section of carbon bar, C atom% is 94.9%, O atom% is 4.5% and S atom% is 0.6%. There is no metal or other HER-active impurities in/on the carbon bar.

Figure S11. TEM images of $Mo_{(1-x)}W_xSe_2/N$ -MWCNT before and after acid treatment. a) Before acid treatment, there is some amorphous carbon residues around crystal surface. b) After acid treatment, the carbon residues become less and the surface of crystal is more smooth and clean.

Figure S12. Fingerprint Cyclic Voltammetry Curve of Commercial Pt/C (46%, TEC10E50E, TKK) in Ar-saturated 0.1 M HClO₄ at a scan rate of 50 mV s⁻¹. For commercial Pt/C electrode preparation, 10 mg of Pt/C powder was ultrasonically dispersed in 5 mL of a 4:1 (v:v) water/2-propanol mixed solvents along with 20 μ L of Nafion solution for 15 min. 20 μ L of above suspension was deposited on a polished and clean glassy carbon (d = 5 mm) and dry naturally in the air for testing (mass loading is 0.2 mg cm⁻²). The calculated electrochemical surface area (ECSA) is ~60 m²/g_{Pt}.

Figure S13. Comparison of overpotentials needed to achieve the geometric current density of -10 mA cm⁻² in Table S1. The details of references are as following: 1. Nano Lett. 2013, 13, 3426; 2. ACS Nano, 2014, 8, 8468; 3. Adv. Mater. 2015, 27, 4732; 4. J. Mater. Chem. A, 2015, 3, 18090; 5. J. Mater. Chem. A, 2015, 3, 16263; 6. Chem. Mater. 2016, 28, 1838; 7. Adv. Funct. Mater. 2016, 26, 8537; 8. ACS Catal., 2014, 4, 2866; 9. J. Mater. Chem. A, 2015, 3, 19706; 10. Nanoscale, 2015, 7, 18595; 11. J. Mater. Chem. A, 2015, 3, 12149; 12. Nanoscale, 2015, 7, 18595; 13. Nanoscale, 2016, 8, 15262; 14. J. Am. Chem. Soc., 2011, 133, 7296; 15. Energy Environ. Sci., 2014, 7, 2608; 16. Nat. Mater., 2016, 15, 48. Noted that * is our work.

MoSe ₂ on carbon fiber paper	CVD		10	250	59.8	0.38	Nano Lett. 2013, 13, 3426	
WSe ₂ on carbon fiber paper	(vertical sheets)	-	-10	300	77.4	-		
WS _{2(1-x)} Se _{2x} NTs	CVD	~0.21	-10	~270	105	29	ACS Nano, 2014, 8, 8468	
WSe ₂				~350	99	3	0000	
WS _{2(1-x)} Se _{2x} monolayer	CVD	-	-10	150	85	-	Adv. Mater. 2015, 27, 4732	
WSe ₂ -C-20	CVD			158	98	240	I Mater Chem A	
$\frac{W(Se_{0.4}S_{0.6})_2}{-C-10}$	(triangula r)	-	-10	174	106	229	2015, 3, 18090	
MoSe ₂ microspheres	colloidal route	-	-5	100	56	-	Nano Res. 2015, 8, 1108	
rGO/PI-			-4.9	100				
MoSe 2 nanoparticle s MoSe ₂ rGO/PI composite	electrode position	-	-7.9	200	82	-	Adv. Funct. Mater. 2015, 25, 1814	
SnO ₂ @MoS e ₂	solvother mal	-	-10	~174	51		J. Mater. Chem. A, 2015, 3, 16263	
MoSe ₂ -NiSe	solvother mal	~0.285	-10	210	56	-	Chem. Mater. 2016, 28, 1838	
MoO ₂ /MoSe ₂ Core–Shell Nanosheet	CVD	~0.13	-10	181	49.1	1.36	Adv. Funct. Mater. 2016, 26, 8537	
MoSe ₂ (Macroporou s)	wet- chemical	1.36 mg cm ⁻²	-10	250	80	0.01	ACS Catal., 2014, 4, 2866	
MoSe ₂	solvother		-10	390	103		I Mater Chem A	
MoSe ₂ /graph ene	mal	mal 0.285		195	67	-	2015, 3, 19706	

PhLi-MoSe ₂	Aromatic - Exfoliate d	-	-10	351	54	-	ACS Catal. 2016, 6, 4594
WSe ₂ /CFM 3D carbon nanofiber mats	CVD (dendritic)	2.2	-10	228	80	15	J. Mater. Chem. A, 2015, 3, 12149
CNT@ MoSe ₂	solvother mal	-	-10	178	58	-	Nanoscale, 2015, 7, 18595
MoS ₂	colloidal	0.43	-10	181	52	_	Nanoscale, 2016, 8,
WS ₂	conoidai	0.45	-10	152	46		15262
MoS ₂ /RGO	solvother mal	0.28	-10	~152	41	-	J. Am. Chem. Soc., 2011, 133, 7296
WS ₂ nanosheets	CVD	1.0	-10	142	70	93	Energy Environ. Sci., 2014, 7, 2608
Strained vacancy MoS ₂	CVD	-	-10	170	60	-	Nat. Mater., 2016, 15, 48
Stepped edge surface- terminated MoS ₂	Hydrothe rmal	3.2	-10	104	59	200	Energy Environ. Sci., 2017, 10, 593

Table S2. Structures and hydrogen adsorption energies (ΔE_{H^*} and ΔG_{H^*}) for Mo_(1-x)W_xSe₂. The grey, red, green and white spheres represent Mo, W, Se and the adsorbed hydrogen atoms, respectively.

$Mo_{(1-x)}W_xSe_2$	x	Stable structure	$\Delta E_{\mathrm{H}^{*}}\left(\mathrm{eV}\right)$	$\Delta G_{\mathrm{H}^{*}}\left(\mathrm{eV}\right)$
Basal plane	0%		1.289	1.569
	4%		1.257	1.537
	8%		1.239	1.519
	12%		1.245	1.525
	16%		1.247	1.527
	20%		1.252	1.532
	100%		1.402	1.682
Edge	0%		-0.861	-0.581
	2.38%		-0.407	-0.127
	2.38%		-0.663	-0.383
	4.76%		0.051	0.331
	4.76%		0.019	0.299

7.14%	-0.874	-0.594
7.14%	-0.361	-0.081
7.14%	-0.736	-0.456
14.29% (Mo-edge)	-0.933	-0.653
14.29% (W-edge)	-0.450	-0.170