Supporting Information

Construction of a stable lithium sulfide membrane to greatly confine

polysulfides for high performance lithium-sulfur batteries

Chao Wu, acd Chunxian Guo, e JingGao Wu, acd Wei Ai, b Ting Yu, b* and Chang Ming Liacde*

^aInstitute for Clean Energy & Advanced Materials, Southwest University, Chongqing 400715, P. R. China
^bDivision of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University 637371, Singapore
^cFaculty of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
^dChongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, P. R. China
^eInstitute for Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215011, China

*Corresponding author: C. M. Li, E-mail: <u>ecmli@swu.edu.cn</u> <u>changming2717@qq.com</u>

Fig. S1 The in-situ optical microscopy images of the different stages in an electrochemical charge/discharge process at 0.1

mV s⁻¹ scan rate and 1.7-2.7 V voltage window. (a), A initial state. (b), discharge to 2.2 V. (c), discharge to 1.7 V and (d),

re-charge to 2.7 V. (The shape guide shows the color variation of cathode surface from black to yellow).

Fig. S2 (a) XRD and (b) Raman spectrum includes MWCNTs@sulfur, sulfur and MWCNTs. (c) TGA curve shows 70% wt. sulfur in composites.(d) Raman spectrum of commercial Li₂S refer to electrode (discharge to 1.7 V), all of them had

been protected by kapton.

Fig. S3 TGA curve shows 70.1% wt. sulfur in KCNTs.

Fig.S4 (a) the SEM image of KCNTs and (b) Ketjen black and super P with sulfur as the electrode materials after the

cycling.

Fig.S5 The KCNTs@S electrode without LS membrane has cycling performance (a) and columbic efficiency (b) at 1C

current density.

Fig. S6 (a) the theoretical calculation of various polysulfide intermediates space size. (b) The cycling performance of LS membrane improved cathode (70% wt. S) at 2.5 C and 5 C. (c) columbic efficiency of LS membrane improved cathode (70% wt. S) at 2.5 C and 5 C.

Table 1 | Summary the performance of MWCNTs/Sulfur as cathode for Li–S battery systems.

Approach	Voltage	Rate	Sulphur	Total cycle	Degradation rate per	Reference
	window	performance	loading	number	cycle	
	(V)		in electrode			
nano-sulfur/MWCNTs	1.5~3	N/A	48%	30	1.1% (300	1
composite						
S-coated-MWCNTs cathode	1.5~2.5	N/A	68%	60	N/A	2
polyacrylonitrile-	1~3	450 (4 C)	48%	50	0.3% (C/10)	3
sulfur@MWCNT						
composite						
Dual core-shell structured	1.5~2.8	665 (1.2 C)	47.8%	200	0.177% (1500)	4
sulfur cathode composite						
hierarchical S/MWCNT	1.7~2.7	600 (1	45.6%	200	0.27% (1000)	5
nanomicrosphere		C)				

Self-weaving sulfur-carbon	1.5~2.8	1012 (4 C)	40%	100	0.323% (1 C)	6
composite						
Aligned carbon	1.6~3	280 (1 C)	76.5%	80	~0.43% (0.1 C)	7
nanotube/sulfur composite						
Graphene/CNT	1.5~3	970 & 617 (5	45% &	150	0.12% & 0.18%(1 C)	8
@Porous Carbon		C)	69.3%			
Nitrogen-Doped Aligned	1.6~3	770 (5 C)	44.7%	80	0.3% (1 C)	9
Carbon						
Nanotube/Graphene						
Sulfur Nanocrystals	1.9~2.6	934 (5 C)	50%	100	0.164% (1 C)	10
Confined in Carbon						
Nanotube Network						
This work	1.7~2.7	560 (5 C)	56%	210	0.031% (1 C)	

Table 2 | Characteristic of various carbon-sulfur composites with high sulfur loading on the electrode (>60 wt%)

Approach	Sulfur loading density	LiNO ₃ additive	Cycling performance (mAh g	Capacity retention rate	Reference
	(mg cm ⁻²)		¹)		
Electrocatalysis of	0.9	2 wt%	1159.9~628	54%	11
polysulfide					
conversion by sulfur-			(0.5 C, 600 cycles)		
deficient					
MoS2 nanoflakes for			1159.9~819.9	70%	
lithium–sulfur					
batteries			(0.5 C, 150 cyles)		
A Sulfur-Rich	1.2~1.58	0.2 m	818~647	79%	12
Copolymer@CNT					
Hybrid Cathode with			(1 C,~450 cycles)		

Dual-Confinement of					
Polysulfides					
Graphitized porous	4	0.5 m	908~739	81%	13
carbon materials					
with high sulfur			(0.1C, 100 cycles)		
loading for lithium-					
sulfur batteries					
Sole Chemical	1.2~1.5	2 wt%	587~529	90%	14
Confinement of					
Polysulfides on			(1C ,180 cycles)		
Nonporous					
Nitrogen/Oxygen					
Dual-Doped Carbon					
at the Kilogram					
Sulfur Batteries					
Sului Datteries					
The second		0	750.005		
I NIS WORK	3	2 wt%	756~685	90%	
			(1 C, 330 cycles)		

References

1. Chen, J. J.; Jia, X.; She, Q. J.; Wang, C.; Zhang, Q. A.; Zheng, M. S.; Dong, Q. F. Electrochim Acta, 2010,55 (27), 8062-8066.

- 2. Yuan, L. X.; Yuan, H. P.; Qiu, X. P.; Chen, L. Q.; Zhu, W. T. J Power Sources, 2009,189 (2), 1141-1146.
- 3. Yin, L. C.; Wang, J. L.; Yang, J.; Nuli, Y. N. J Mater Chem, 2011, 21 (19), 6807-6810.
- 4. Wang, C.; Wan, W.; Chen, J. T.; Zhou, H. H.; Zhang, X. X.; Yuan, L. X.; Huang, Y. H. J Mater Chem A, 2013, 1 (5), 1716-1723.

5. Chen, J. J.; Zhang, Q.; Shi, Y. N.; Qin, L. L.; Cao, Y.; Zheng, M. S.; Dong, Q. F. Phys Chem Chem Phys, 2012, 14 (16), 5376-5382.

6. Su, Y. S.; Fu, Y. Z.; Manthiram, A. Phys Chem Chem Phys, 2012, 14 (42), 14495-14499.

7. Cheng, X. B.; Huang, J. Q.; Zhang, Q.; Peng, H. J.; Zhao, M. Q.; Wei, F. Nano Energy, 2014, 4, 65-72.

8. Peng, H. J.; Huang, J. Q.; Zhao, M. Q.; Zhang, Q.; Cheng, X. B.; Liu, X. Y.; Qian, W. Z.; Wei, F. Adv Funct Mater, 2014, 24 (19), 2772-2781.

9. Tang, C.; Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Cheng, X. B.; Tian, G. L.; Peng, H. J.; Wei, F. Adv Mater, 2014, 26 (35), 6100.

10. Sun, L.; Li, M. Y.; Jiang, Y.; Kong, W. B.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Nano Lett, 2014, 14 (7), 4044-4049.

11. Lin, H.B., Yang, L.Q., Jiang, X., Li, G.C., Zhang, T.R., Yao, Q.F., Zheng, G.W., and Lee, J.Y. Energ Environ Sci., 2017, 10, 1476-1486.

12. Hu, G.J., Sun, Z.H., Shi, C., Fang, R.P., Chen, J., Hou, P.X., Liu, C., Cheng, H.M., and Li, F. Adv Mater. 2017, 29, 1603835.

13. Peng, X.X., Lu, Y.Q., Zhou, L.L., Sheng, T., Shen, S.Y., Liao, H.G., Huang, L., Li, J.T., and Sun, S.G. Nano Energy., 2017, 32, 503-510.

 Mi, K., Chen, S.W., Xi, B.J., Kai, S.S., Jiang, Y., Feng, J.K., Qian, Y.T., and Xiong, S.L. Adv Funct Mater. 2017, 27, 1604265