Supporting Information

Metal-organic framework (ZIF-67) as efficient cocatalyst for photocatalytic reduction of CO_2 : the role of morphology effect

Mang Wang, ^a Jinxuan Liu, ^{a, *} Chunmei Guo, ^a Xiaosu Gao, ^a Chenghuan Gong, ^a Yan

Wang, ^b Bo Liu, ^b Xiaoxin Li, ^a Gagik G. Gurzadyan, ^a Licheng Sun ^{a, c, *}

^a State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology, 116024 Dalian, China.

^b Department of Chemistry, KTH Royal Institute of Technology, 110044 Stockholm, Sweden.

*Corresponding author:

E-mail: jinxuan.liu@dlut.edu.cn; sunlc@dlut.edu.cn

Figure S1. (a) AFM image of ZIF-67_3 and (b) height profile.

Figure S2. Schematic drawing of in-situ quartz-crystal microbalance setups coupled with high-temperature chamber for CO_2 adsorption. (1) gas supply (N₂ and CO_2); (2) gas flow controller; (3) three-way valve gas distributor; (4) QCM with high temperature chamber; (5) QCM sensor with and without ZIF-67 coating; (6) QCM sensor: top view(lift), and cross section(right); (7) computer.

Figure S3. In-situ FTIR spectra recorded with ZIF-67_3 sample with and without CO_2 . The solution was continuously bubbled with CO_2 during the measurement. Therefore, the band at 2360 cm⁻¹ and 2342 cm⁻¹ can be attributed to the R branch and P branch of the antisymmetric of CO_2 stretching vibrations, respectively.

As can be seen from Figure S3, with the introduction of CO_2 , a band at 2272 cm⁻¹ was observed, which can be assigned to asymmetric stretching vibrations of CO_2 molecule adsorbed on Co^{2+} .

Figure S4. In-situ FTIR spectra recorded with ZIF-67_1 sample with and without CO_2 . The solution was continuously bubbled with CO_2 during the measurement. Therefore, the band at 2360 cm⁻¹ and 2343 cm⁻¹ can be attributed to the R branch and P branch of the antisymmetric of CO_2 stretching vibrations, respectively.

As can be seen from Figure S4, with the introduction of CO_2 , a band at 2270 cm⁻¹ was observed, which can be assigned to asymmetric stretching vibrations of CO_2 molecule adsorbed on Co^{2+} .

Figure S5. In-situ FTIR spectra recorded with ZIF-67_2 sample with and without CO_2 . The solution was continuously bubbled with CO_2 during the measurement. Therefore, the band at 2361 cm⁻¹ and 2343 cm⁻¹ can be attributed to the R branch and P branch of the antisymmetric of CO_2 stretching vibrations, respectively.

As can be seen from Figure S5, with the introduction of CO_2 , a band at 2271 cm⁻¹ was observed, which can be assigned to asymmetric stretching vibrations of CO_2 molecule adsorbed on Co^{2+} .

Figure S6. Transient kinetics monitored at 610 nm for $[Ru(bpy)_3]^{2+}$ and $[Ru(bpy)_3]^{2+}$ +ZIF-67_3.

Figure S7. ESR signal of $[Ru(bpy)_3]^{2+} + ZIF-67_3$ recorded at 150 K in N₂ without light.

Nr.	Band posit	Assignment	
	MIM	ZIF-67_1-3	Assignment
1	680, 741, 754	687,754	Yimidazole ring
2	900-1350	900-1350	$\beta_{imidazolering}$
3	1372	1382	v _{sym} CH ₃
4	1457	1481	vassymCH3
5	1350-1500	1350-1500	Uimidazole ring
6	1594	1562	
7	1844	/	U _{N-H}

Table S1. Vibrational frequencies of MIM, and the as-synthesized ZIF-67 materials together with their corresponding band assignments.

Table S2. BET surface area and microporous volume of ZIF-67 of differentmorphology.

Sample	S_{BET}/m^2g^{-1}	V _{pore} / cm ³ g ⁻¹	V _{micro} / cm ³ g ⁻¹
ZIF-67_1	1698.877	0.6924	0.581
ZIF-67_2	835.704	0.3863	0.288
ZIF-67_3	16.245	0.05079	0

	Condition						
MOFs	Quantity	Light [nm]	Solvent (Sacrificial agent)	Time [h]	Product CO[µmol]	TON	Ref.
Co-ZIF-9	0.8 µmol	λ>420	MeCN/H ₂ O (TEOA)	0.5	41.8	52.2	1
ZIF-67	0.45 µmol	λ>420	MeCN/H ₂ O (TEOA)	0.5	37.4	112	2
Co-ZIF-9	4 μmol	λ>420	MeCN/H ₂ O (TEOA)	1	50.4	12.6	3
MOF-1		410	MeCN/H ₂ O (TEA)	6	/	6.44	3b
UiO-66/ carbon nitride	0.1 g	$\begin{vmatrix} 400 < \lambda \\ < 800 \end{vmatrix}$	MeCN/H ₂ O (TEA)	6	59.4	/	4
MOF 4	1-2 μmol	λ>300	MeCN (TEA)	6	/	5	5
ZIF-67_3 (ZIF-L)	4.4 μmol	λ>400	MeCN/H ₂ O (TEOA)	3.8	15.57	3.5	This work
MOF-525-Co	2 mg	$\begin{vmatrix} 400 < \lambda \\ < 800 \end{vmatrix}$	MeCN (TEOA)	6	2.25	/	6
CPO-27- Mg/TiO ₂	10 mg	365	water vapor	10	409		7
Ag⊂Re3- MOF	0.5-8 μmol	$\begin{array}{ c c }\hline 400 < \lambda \\ < 700 \end{array}$	MeCN (TEA)	50	/	2.8	8
Re-MOF- (NH ₂)(X%)	5 mg	$\begin{vmatrix} 400 < \lambda \\ < 700 \end{vmatrix}$	TEA	6	33	/	9

Table S3. Reported MOF materials for converting CO_2 to CO under visible light irradiation.

References

1. Wang, S.; Yao, W.; Lin, J.; Ding, Z.; Wang, X., Cobalt imidazolate metal-organic frameworks photosplit CO₂ under mild reaction conditions. *Angew Chem Int Ed Engl* **2014**, *53* (4), 1034-8.

2. Qin, J.; Wang, S.; Wang, X., Visible-light reduction CO₂ with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. *Applied Catalysis B: Environmental* **2017**, *209*, 476-482.

3. (a) Wang, S.; Wang, X., Photocatalytic CO₂ reduction by CdS promoted with a zeolitic imidazolate framework. *Applied Catalysis B: Environmental* **2015**, *162*, 494-500; (b) Huang, R.; Peng, Y.; Wang, C.; Shi, Z.; Lin, W., A Rhenium-Functionalized Metal-Organic Framework as a Single-Site Catalyst for Photochemical Reduction of Carbon Dioxide. *Eur. J. Inorg. Chem.* **2016**, *2016* (27), 4358-4362.

4. Shi, L.; Wang, T.; Zhang, H.; Chang, K.; Ye, J., Electrostatic Self-Assembly of Nanosized Carbon Nitride Nanosheet onto a Zirconium Metal-Organic Framework for Enhanced Photocatalytic CO2Reduction. *Advanced Functional Materials* **2015**, *25* (33), 5360-5367.

5. Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W., Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. *J Am Chem Soc* **2011**, *133* (34), 13445-54.

Zhang, H.; Wei, J.; Dong, J.; Liu, G.; Shi, L.; An, P.; Zhao, G.; Kong, J.; Wang, X.; Meng, X.; Zhang, J.; Ye, J., Efficient Visible-Light-Driven Carbon Dioxide Reduction by a Single-Atom Implanted Metal-Organic Framework. *Angew. Chem. Int. Ed. Engl.* 2016, *55* (46), 14310-14314.

7. Wang, M.; Wang, D.; Li, Z., Self-assembly of CPO-27-Mg/TiO 2 nanocomposite with enhanced performance for photocatalytic CO 2 reduction. *Applied Catalysis B: Environmental* **2016**, *183*, 47-52.

8. Choi, K. M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C. A.; Barmanbek, J. T.; Alshammari, A. S.; Yang, P.; Yaghi, O. M., Plasmon-Enhanced Photocatalytic CO(2) Conversion within Metal-Organic Frameworks under Visible Light. *J. Am. Chem. Soc.* **2017**, *139* (1), 356-362.

9. Ryu, U. J.; Kim, S. J.; Lim, H. K.; Kim, H.; Choi, K. M.; Kang, J. K., Synergistic interaction of Re complex and amine functionalized multiple ligands in metal-organic frameworks for conversion of carbon dioxide. *Sci Rep* **2017**, *7* (1), 612.