Supporting Information

1. HER pathway

Figure S1. (a) Schematic illustration for reaction pathway in hydrogen evolution reaction. (b) The HER volcano plots of MXenes with 1/9 H coverage following the method by Nørskov *et al.*¹

2. Scheme to calculate Gibbs free energy for adsorbed hydrogen

We calculate the ΔG_H of oxygen-terminated MXenes (M₂XO₂) at the same hydrogen coverage. The hydrogen stability is depended on the difference of binding energy.¹⁻³

$$\Delta E_H = E_{(system + H)} - E_{(system)} - \frac{1}{2}E_{(H_2)}$$
(1)

 $E_{(system + H)}$ is the energy of the M₂XO₂ with one hydrogen atom adsorbed on it, $E_{(system)}$ and $E_{(H_2)}$ are the total energies of the M₂XO₂, and the gaseous hydrogen molecule, respectively. The Gibbs free energy for adsorbed hydrogen is according to the following formula.¹⁻³

$$\Delta G_H = \Delta E_H + \Delta E_{ZPE} - T \Delta S_H \tag{2}$$

Here ΔE_{ZPE} is the differential zero-point energy between the adsorbed state and the gas phase state. ΔS_H is approximately equal to the entropy of gas phase H₂ at standard conditions (300K, 1bar).^{3,4}

3. HER activities for pristine MXenes

Table S1. The most stable adsorption site of O atom and the charge of it (e_0), the calculation ΔG_H at different hydrogen coverage. The active site is indicated in red.

System	Adsorption site of O atom	Charge of O ⁻ ion (e)	Structure	1/9 H coverage ΔG_H (eV)	1/4 H coverage ΔG_H (eV)
Ti ₂ CO ₂	Fcc	-1.10		0.12	0.22
Nb ₂ CO ₂	Fcc	-1.10		0.13	0.16
Zr ₂ CO ₂	Fcc	-1.25		0.81	0.86
Ta ₂ CO ₂	Fcc	-1.16		0.63	0.72
V ₂ CO ₂	Fcc	-0.97		-0.43	-1.22
$\mathrm{Hf}_{2}\mathrm{CO}_{2}$	Fcc	-1.24		1.08	1.14
Sc ₂ CO ₂	Fcc+Hcp	-1.29		0.36	0.47
Y ₂ CO ₂	Fcc+Hcp	-1.31		0.87	0.92
Ti ₂ NO ₂	Fcc	-1.10		0.14	0.20
Nb ₂ NO ₂	Нср	-1.12		-0.12	-0.15
Zr ₂ NO ₂	Fcc	-1.27		0.65	0.80
Ta ₂ NO ₂	Нср	-1.18		0.45	0.58
V ₂ NO ₂	Fcc	-1.00	***	-0.26	-1.56
Hf ₂ NO ₂	Fcc	-1.25		0.99	1.19
Sc ₂ NO ₂	Fcc	-1.11	****	-0.95	-1.49
Y ₂ NO ₂	Fcc	-1.30	1228.	-0.70	-1.23

4. The adsorption properties of transition metal atom

Table S2. The adsorption energy between MXenes and single transition metal atom ($\Delta E_{TM} - ads$), the more negative the value, the stronger the interaction. "-" means that it is difficult for cadmium and mercury to be adsorbed on MXenes, the interatomic distances between them and the MXenes layer are too far (>3 Å).

	ΔE_{TM-ads}														
System	Pt	Pd	W	Mo	Os	Ru	Ir	Rh	Ag	Au	Re	Cu	Zn	Cd	Hg
Ti ₂ CO ₂	-1.74	-1.37	-7.16	-7.47	-4.76	-3.98	-3.29	-2.72	-0.88	-0.35	-6.24	-0.71	-0.03	-	-
Nb ₂ CO ₂	-1.75	-1.34	-7.08	-7.20	-4.63	-4.08	-3.78	-2.73	-0.85	-0.35	-6.07	-0.76	-0.01	-	-
Zr_2CO_2	-1.32	-1.05	-5.39	-5.91	-3.64	-3.44	-2.68	-2.25	-0.62	-0.10	-4.63	-0.40	0.08	-	-
Ta ₂ CO ₂	-1.48	-1.23	-5.67	-6.10	-3.71	-3.59	-3.70	-2.52	-0.63	-0.12	-4.81	-0.31	0.07	-	-
V_2CO_2	-1.84	-1.46	-8.67	-8.36	-5.67	-4.63	-3.43	-2.84	-1.03	-0.70	-7.27	-1.08	-0.09	-	-
$\mathrm{Hf_2CO_2}$	-1.28	-0.96	-4.99	-5.64	-3.53	-3.44	-2.72	-2.36	-0.43	-0.02	-4.32	-0.57	0.12	-	-
Sc_2CO_2	-1.29	-1.20	-4.76	-5.19	-4.10	-2.58	-2.99	-0.96	-0.55	-0.04	-4.4	-0.89	0.04	-	-
Y_2CO_2	-1.26	-1.19	-6.67	-3.56	-4.53	-2.58	-3.33	-1.15	-0.56	-0.03	-4.34	-0.89	0.05	-	-
Ti ₂ NO ₂	-3.05	-1.57	-7.99	-8.34	-5.65	-4.37	-4.31	-2.96	-0.95	-0.52	-6.96	-0.89	-0.38	-	-
Nb ₂ NO ₂	-3.26	-1.47	-7.26	-7.41	-5.20	-4.48	-4.37	-3.08	-0.91	-0.45	-6.34	-0.91	-0.33	-	-
Zr_2NO_2	-2.85	-1.25	-5.83	-6.24	-4.38	-4.23	-4.08	-2.90	-0.75	-0.20	-5.11	-0.62	-0.10	-	-
Ta ₂ NO ₂	-2.77	-1.18	-5.94	-6.31	-4.46	-4.19	-4.18	-2.87	-0.72	-0.23	-5.26	-0.53	-0.17	-	-
V_2NO_2	-3.33	-1.94	-8.19	-8.42	-6.34	-4.78	-4.47	-3.20	-1.16	-0.76	-7.45	-1.26	-0.67	-	-
$\mathrm{Hf_2NO_2}$	-2.10	-1.21	-5.18	-5.72	-3.99	-3.94	-3.98	-2.83	-0.57	-0.14	-4.56	-0.66	-0.05	-	-
Sc_2NO_2	-2.29	-1.72	-8.10	-6.38	-5.83	-4.84	-4.47	-3.49	-1.19	-0.65	-7.21	-1.22	-0.69	-	-
Y ₂ NO ₂	-2.25	-1.69	-5.43	-8.26	-6.68	-5.58	-4.56	-3.52	-1.00	-0.77	-7.29	-1.56	-0.53	-	-

5. HER activities for TM-modified MXenes

Table S3. The ${}^{\Delta G_H}$ of materials after surface modified by single transition metal atom. The S_0 , S_1 , S_2 represents the different H adsorption sites, as shown in Figure 2.

S t.	G .(.)							$\Delta G_{H/eV}$	τ					
System	Site	Pt	Pd	W	Mo	Os	Ru	Ir	Rh	Ag	Au	Re	Cu	Zn
Ti ₂ CO ₂	S_0	-0.13	0.21	0.23	1.09	0.36	-0.34	-0.09	0.43	0.31	-0.64	0.10	0.46	-0.22
	S_I	-0.19	0.14	0.20	0.21	0.14	0.36	-0.33	0.03	0.24	0.11	0.25	0.24	-0.18
	S_2	-0.21	0.17	0.30	0.30	0.21	0.27	-0.24	0.11	0.25	0.07	0.29	0.22	-0.18
Nb ₂ CO ₂	S_0	-0.24	0.19	-0.37	0.78	0.12	0.44	0.26	0.33	0.33	-0.21	-0.24	0.35	0.11
	S_I	-0.30	0.24	0.22	0.27	0.15	0.17	0.04	0.16	0.26	0.13	0.20	0.30	0.20
	S_2	-0.19	0.26	0.27	0.37	0.25	0.25	0.12	0.19	0.28	0.12	0.28	0.24	0.14
Zr_2CO_2	S_0	0.54	1.00	1.55	1.55	-0.05	0.53	0.15	0.68	0.85	-0.66	0.18	1.06	0.86
	S_I	0.49	0.79	0.79	0.83	0.68	0.65	0.18	0.49	0.84	0.65	0.81	0.82	0.95
	S_2	0.46	0.81	0.85	0.88	0.34	0.71	0.11	0.55	0.82	0.46	0.83	0.82	0.87
Ta ₂ CO ₂	S_{0}	0.32	0.73	-0.48	0.98	0.05	0.70	0.69	0.67	0.78	0.36	0.78	0.80	0.48
	S_I	0.58	0.80	0.72	0.77	-0.38	0.68	0.61	0.63	0.73	0.60	0.65	0.69	0.57
	S_2	0.27	0.81	0.82	0.87	-0.03	0.70	0.60	0.54	0.74	0.66	0.75	0.72	0.56
V_2CO_2	S_{0}	-0.89	-0.54	-0.22	-0.31	0.45	0.34	-0.29	-0.51	-0.17	-0.31	-0.69	-0.70	-0.27
	S_I	-0.88	-0.56	-0.10	-0.09	-0.33	-0.26	-0.53	-0.28	-0.20	-0.29	-1.40	-0.36	-0.34
	S_2	-0.85	-0.36	-0.52	-0.01	-0.09	-0.16	-0.46	-0.30	-0.17	-0.29	-1.32	-0.44	-0.31
Hf_2CO_2	$S_{ heta}$	-0.60	1.23	-0.22	1.01	0.35	0.44	0.22	0.83	0.84	0.31	0.98	1.33	0.99
	S_I	0.73	1.06	1.07	1.11	0.91	0.88	0.31	0.67	1.07	0.86	1.07	1.10	1.04
	S_2	0.69	1.09	1.14	1.16	0.42	0.93	0.21	0.72	1.05	0.44	1.14	1.11	1.04
Sc_2CO_2	$S_{ heta}$	0.97	0.32	0.71	1.17	0.12	-0.36	-0.27	-0.97	-0.38	-0.34	0.44	0.78	0.26
	S_I	1.31	0.25	0.26	0.99	0.40	-0.14	0.07	-0.75	-0.58	-0.07	0.21	1.02	0.34
	S_2	0.56	0.10	0.32	-0.33	0.34	0.21	-0.02	-0.73	-0.76	-0.07	-0.63	0.90	0.39
Y_2CO_2	$S_{ heta}$	0.17	0.22	0.53	0.60	0.39	-0.19	0.03	-0.85	0.22	-0.35	-0.58	0.88	0.28
	S_I	0.51	0.30	0.53	-0.53	0.61	0.39	0.25	-0.66	-0.04	-0.14	-0.79	1.01	0.39
	S_2	0.61	0.18	0.67	-0.39	0.67	0.37	0.44	-0.22	-0.29	-0.09	-0.97	0.75	0.30
Ti ₂ NO ₂	S_{0}	0.35	0.12	0.10	1.21	0.46	0.72	0.09	0.63	0.42	-1.19	0.32	0.48	-0.13
	S_{I}	0.20	0.28	0.46	0.48	0.32	0.33	-0.08	0.31	0.38	0.22	0.37	0.35	-0.11
	S_2	0.26	0.30	0.49	0.50	0.37	0.35	-0.27	0.31	0.40	0.21	0.45	0.38	-0.16
Nb_2NO_2	S_0	0.70	-0.22	-0.16	0.74	0.50	0.41	0.82	-0.32	0.07	0.33	0.10	-0.17	0.21
	S_{I}	0.46	-0.05	-0.06	-0.02	0.32	0.25	0.49	-0.68	-0.03	0.28	-0.05	-0.28	0.25
	S_2	0.63	-0.23	0.02	0.02	0.43	0.31	0.85	-0.24	0.04	0.38	0.07	-0.23	0.25
Zr_2NO_2	S_{0}	1.01	0.78	1.46	1.40	0.35	0.87	1.00	0.80	0.58	-0.33	0.74	0.96	0.59
	S_{I}	0.64	0.67	0.87	0.87	0.25	0.82	0.83	0.66	0.85	0.57	0.82	0.87	0.64
	S_2	1.08	0.78	0.94	0.91	0.30	0.79	0.82	0.77	0.74	0.69	0.86	0.92	0.63
Ta ₂ NO ₂	S_0	-0.28	0.38	-0.95	-0.12	-1.21	-0.35	-0.30	-0.16	0.60	-0.71	-0.04	1.06	0.29
	S_I	0.59	0.38	0.39	0.52	-1.52	-0.84	0.29	-0.59	0.54	0.79	-0.82	0.85	0.38
	S_2	0.62	0.31	0.53	0.62	-1.11	-0.38	0.63	-0.25	0.57	0.82	-0.73	0.84	0.37

V ₂ NO ₂	S_0	-0.49	-0.68	-0.98	0.84	-0.98	0.21	-0.19	-0.02	0.57	-0.68	-0.77	-0.43	-0.22
	S_I	-0.83	-0.58	-1.13	0.05	-0.54	-0.12	-1.45	-0.28	-0.43	-0.73	-0.23	-0.43	-0.29
	S_2	-0.75	-0.58	-0.08	0.21	-0.70	-0.03	-1.41	-0.28	-0.33	-0.66	-0.68	-0.35	-0.21
Hf_2NO_2	S_0	-0.63	1.07	1.04	1.21	0.44	1.09	1.20	1.05	1.02	-0.31	0.81	1.27	0.90
	S_I	0.95	1.02	1.22	1.21	0.39	1.09	1.16	0.91	1.13	0.90	0.77	1.25	0.97
	S_2	1.00	1.15	1.30	1.27	0.40	1.03	1.16	0.85	1.10	1.04	0.38	1.27	0.97
Sc_2NO_2	S_{0}	-1.30	-1.02	1.19	0.25	-0.39	-0.73	-0.55	-0.47	-1.39	-1.15	0.74	-0.90	-0.59
	S_I	-1.15	-1.20	-0.58	0.21	-0.44	-0.88	-0.63	-0.93	-1.20	-1.27	-0.07	-1.21	-1.15
	S_2	-1.14	-1.18	-0.66	0.18	-0.43	-0.88	-0.63	-0.92	-1.21	-1.24	-0.08	-1.20	-1.14
Y_2NO_2	S_0	-0.82	-0.95	-0.65	-1.32	-0.57	-0.57	-0.45	-0.40	-0.69	-0.88	-1.32	-0.87	-0.70
	S_I	-1.40	-1.06	0.77	-1.24	-0.42	-0.73	-0.52	-0.86	-1.02	-1.12	-0.60	-1.04	-0.97
	S_2	-1.40	-1.03	0.33	-1.32	-0.37	-0.67	-0.48	-0.80	-1.04	-1.12	-1.11	-1.02	-0.93

Figure S2. The ${}^{\Delta G_H}$ of various metal modified MXenes. The left and right panels exhibit carbides and nitrides respectively. The green shaded area marks the HER active energy range with the ${}^{\Delta G_H}$ in the region between -0.2 and 0.2 eV. Furthermore, the ${}^{\Delta G_H}$ values for the three H adsorption sites (S_0 , S_1 , S_2) of each material are plotted in the order of S_0 - S_1 - S_2 .

6. Activation energy barrier for HER on MXenes

Here, we show the activation barriers for the $TM-M_2XO_2$ combination beyond the ones shown in the main text.

It has been demonstrated that the simulation on H-reaction can be influenced by the water environment.^{5,6} Therefore, for rationally simulating the activation energy barrier of H-reaction, we add the H₂O molecules on the surface of MXenes one side with one H₃O⁺ ion, according to the ordinary distance between water and the length of hydrogen bond in water. A number of initial water molecule conformations are used while the most stable one 1/8 (H₂O/Å²) is used for the barrier simulation.

Figure S3. The transition energy barriers of materials with catalytic activity in modified MXenes (a) Ti_2CO_2 , (b) V_2CO_2 , Ag- and Mo-modified V_2CO_2 , (c) Ti_2NO_2 , (d) V_2NO_2 and Ru-modified V_2NO_2 , (e) Sc_2CO_2 , Au- and Ir-modified Sc_2CO_2 , (f) Ta_2CO_2 and Os-modified Ta_2CO_2 , (g) Sc_2NO_2 and Re-modified Sc_2NO_2 , (h) Y_2CO_2 and Au-modified Y_2CO_2 . The "-T" represents the Tafel reaction while the "-H" typifies the Heyrovsky reaction in the figure.

7. The Bader charge and its effect on energy barrier and ΔG_H

Table S4. Bader charge of O ion in different MXenes were calculated by Bader charge scheme. e_S represents the charge of O ion on stable site, e_T represents the charge of O ion on transition site. The value with "-" means the ion gain electron comparing with isolated atom state while the value with "+" means the ion loss electron. Δe represents the charge difference between e_S and e_T ($\Delta e'=e_S-e_T$) in the table. O-H is the distance between the H atom and the O atom.

System	Reaction	Barrier (eV)	0- ie	on charg	e (e)	О-Н (Å)	H ⁺ ion charge (e)			
		E_A	e_S	e_T	$\Delta e'$	(A)	e_S	e_T	Δe '	
Ti ₂ CO ₂	Tafel	1.44	-1.30	-1.16	0.14	2.06	+0.65	+0.30	0.35	
	Heyrovsky	0.84	-1.26	-1.16	0.10	3.64	+0.64	+0.34	0.30	
Nb ₂ CO ₂	Tafel	1.82	-1.29	-1.11	0.18	2.21	+0.63	+0.24	0.39	
	Heyrovsky	1.37	-1.27	-1.14	0.13	3.01	+0.63	+0.29	0.34	
Zr_2CO_2	Tafel	1.62	-1.38	-1.23	0.15	2.62	+0.67	+0.29	0.38	
	Heyrovsky	1.00	-1.37	-1.25	0.12	3.19	+0.65	+0.33	0.32	
Ir-Zr ₂ CO ₂	Tafel	0.55	-1.35	-1.26	0.09	3.70	+0.64	+0.34	0.30	
	Heyrovsky	1.03	-1.39	-1.26	0.13	3.06	+0.66	+0.31	0.35	
Ta ₂ CO ₂	Tafel	2.17	-1.32	-1.16	0.16	2.43	+0.66	+0.30	0.36	
	Heyrovsky	1.98	-1.35	-1.20	0.15	3.13	+0.63	+0.29	0.34	
Os-Ta ₂ CO ₂	Tafel	1.87	-1.24	-1.15	0.09	3.78	+0.63	+0.30	0.33	
	Heyrovsky	2.88	-1.33	-1.16	0.17	2.35	+0.66	+0.26	0.40	
V_2CO_2	Tafel	2.88	-1.23	-0.98	0.25	1.91	+0.65	+0.20	0.45	
	Heyrovsky	2.58	-1.24	-1.01	0.23	2.29	+0.64	+0.20	0.44	
Mo-V ₂ CO ₂	Tafel	2.37	-1.23	-1.04	0.19	3.02	+0.63	+0.24	0.39	
	Heyrovsky	2.46	-1.28	-1.07	0.21	2.64	+0.65	+0.23	0.42	
Ag-V ₂ CO ₂	Tafel	1.52	-1.26	-1.10	0.16	3.73	+0.65	+0.31	0.34	
	Heyrovsky	2.11	-1.32	-1.14	0.18	3.40	+0.62	+0.24	0.38	
Sc_2CO_2	Tafel	2.16	-1.35	-1.23	0.12	2.91	+0.59	+0.19	0.40	
	Heyrovsky	1.75	-1.38	-1.29	0.09	3.53	+0.64	+0.29	0.35	
Ir-Sc ₂ CO ₂	Tafel	3.41	-1.33	-1.16	0.17	2.44	+0.61	+0.18	0.43	
	Heyrovsky	3.78	-1.34	-1.13	0.21	2.18	+0.61	+0.14	0.47	
Au-Sc ₂ CO ₂	Tafel	1.15	-1.34	-1.28	0.06	3.70	+0.56	+0.24	0.32	
	Heyrovsky	2.05	-1.33	-1.23	0.10	3.12	+0.61	+0.22	0.39	
Y_2CO_2	Tafel	2.87	-1.38	-1.27	0.11	2.79	+0.60	+0.15	0.45	
	Heyrovsky	1.90	-1.37	-1.31	0.06	3.76	+0.59	+0.22	0.37	
Au-Y ₂ CO ₂	Tafel	2.78	-1.37	-1.28	0.09	3.28	+0.60	+0.16	0.44	
	Heyrovsky	3.13	-1.35	-1.19	0.16	2.37	+0.58	+0.11	0.47	
Ti ₂ NO ₂	Tafel	2.10	-1.34	-1.16	0.18	2.21	+0.69	+0.26	0.43	
	Heyrovsky	1.59	-1.27	-1.15	0.12	3.41	+0.62	+0.30	0.32	
Nb_2NO_2	Tafel	2.92	-1.26	-1.07	0.19	2.14	+0.63	+0.22	0.41	
	Heyrovsky	2.22	-1.24	-1.07	0.17	2.32	+0.61	+0.24	0.37	
W-Nb ₂ NO ₂	Tafel	2.06	-1.26	-1.11	0.15	2.52	+0.62	+0.27	0.35	

	Heyrovsky	3.18	-1.31	-1.10	0.21	2.01	+0.65	+0.20	0.45
Ag-Nb ₂ NO ₂	Tafel	0.47	-1.31	-1.23	0.08	3.82	+0.66	+0.38	0.28
	Heyrovsky	0.91	-1.36	-1.25	0.11	3.58	+0.62	+0.31	0.31
Re-Nb ₂ NO ₂	Tafel	2.03	-1.25	-1.13	0.12	3.04	+0.61	+0.28	0.33
	Heyrovsky	2.88	-1.30	-1.11	0.19	2.21	+0.66	+0.26	0.40
V_2NO_2	Tafel	3.38	-1.24	-1.00	0.24	2.36	+0.66	+0.21	0.45
	Heyrovsky	2.63	-1.22	-1.02	0.20	2.88	+0.63	+0.21	0.42
Ru-V ₂ NO ₂	Tafel	2.24	-1.18	-1.00	0.18	3.07	+0.63	+0.24	0.39
	Heyrovsky	3.71	-1.25	-0.99	0.26	1.94	+0.65	+0.15	0.50
Sc_2NO_2	Tafel	2.46	-1.36	-1.25	0.11	2.81	+0.63	+0.26	0.37
	Heyrovsky	0.72	-1.36	-1.30	0.06	3.63	+0.59	+0.28	0.31
Re-Sc ₂ NO ₂	Tafel	3.27	-1.36	-1.17	0.19	2.69	+0.63	+0.21	0.42
	Heyrovsky	3.64	-1.34	-1.13	0.21	2.04	+0.62	+0.17	0.46

Table S5. e_0 is the charge on O⁻ ion, the Δe is the charge difference of O⁻ ion before and after the addition of single transition metal atom ($\Delta e = e_0 - e_{TM-0}$), meanwhile, the difference of ΔG_{H} defined as $\Delta G_{H-TM-0} - \Delta G_{H-0}$.

		$e_{O}\left(\mathrm{e}\right)$			ΔG_H difference
System	Site		<i>∆e</i> (e)	$\Delta G_{H/eV}$	between TM-modified
		without H absorbed			and pristine system
Zr ₂ CO ₂		-1.25		0.81	
Ir-Zr ₂ CO ₂	S_{0}	-1.16	-0.09	0.15	-0.66
	S_I	-1.18	-0.07	0.18	-0.63
	S_2	-1.18	-0.07	0.11	-0.70
Re-Zr ₂ CO ₂	S_{0}	-1.18	-0.07	0.18	-0.63
Ta ₂ CO ₂		-1.16		0.63	
Os-Ta ₂ CO ₂	S_{0}	-1.08	-0.08	0.05	-0.58
	S_I	-1.11	-0.05	-0.38	-1.01
	S_2	-1.10	-0.06	-0.03	-0.66
V_2CO_2		-0.97		-0.43	
W-V ₂ CO ₂	S_I	-1.04	0.07	-0.10	0.33
Mo-V ₂ CO ₂	S_{0}	-1.03	0.06	-0.31	0.12
	S_I	-1.02	0.05	-0.09	0.34
	S_2	-1.01	0.04	-0.01	0.42
Os-V ₂ CO ₂	S_2	-1.01	0.04	-0.09	0.34
$Ru-V_2NO_2$	S_2	-1.00	0.03	-0.16	0.27
Ag-V ₂ CO ₂	S_{0}	-1.07	0.10	-0.17	0.26
	S_I	-1.05	0.08	-0.20	0.23
	S_2	-1.06	0.09	-0.17	0.26
Sc_2CO_2		-1.29		0.36	
$Os-Sc_2CO_2$	S_0	-1.15	-0.14	0.12	-0.24

Ru-Sc ₂ NO ₂	S_0	-1.20	-0.09	-0.14	-0.50
Pt-Sc ₂ CO ₂	S_2	-1.26	-0.03	-0.10	-0.46
Ir-Sc ₂ CO ₂	S_{0}	-1.12	-0.17	-0.27	-0.63
	S_I	-1.20	-0.09	0.07	-0.29
	S_2	-1.16	-0.13	-0.02	-0.38
Au-Sc ₂ CO ₂	S_{0}	-1.25	-0.04	-0.34	-0.70
	S_I	-1.24	-0.05	-0.07	-0.43
	S_2	-1.28	-0.01	-0.07	-0.43
Y_2CO_2		-1.31		0.87	
Pt-Y ₂ CO ₂	S_0	-1.25	-0.06	0.17	-0.70
Pd-Y ₂ CO ₂	S_2	-1.28	-0.03	0.18	-0.69
Ru-Y ₂ CO ₂	S_{0}	-1.25	-0.06	-0.19	-1.06
Ir-Y ₂ CO ₂	S_0	-1.18	-0.13	0.03	-0.84
Ag-Y ₂ CO ₂	S_I	-1.28	-0.03	0.04	-0.83
Au-Y ₂ CO ₂	S_{0}	-1.27	-0.04	-0.35	-1.22
	S_I	-1.28	-0.03	-0.14	-1.01
	S_2	-1.29	-0.02	-0.09	-0.96
Ta ₂ NO ₂		-1.18		0.45	
Mo-Ta ₂ NO ₂	S_0	-1.16	-0.02	-0.12	-0.57
Rh-Ta ₂ NO ₂	S_{0}	-1.15	-0.03	-0.16	-0.61
Re-Ta ₂ NO ₂	S_0	-1.10	-0.08	-0.04	-0.49
V_2NO_2		-1.00		-0.26	
W-V ₂ NO ₂	S_2	-1.06	0.06	-0.08	0.18
Mo-V ₂ NO ₂	S_I	-1.09	0.09	0.05	0.31
Ir-V ₂ NO ₂	S_0	-1.01	0.01	-0.19	0.07
$Rh-V_2NO_2$	S_0	-1.00	0.00	-0.02	0.24
$Ru-V_2NO_2$	S_0	-1.07	0.07	0.21	0.47
	S_I	-1.03	0.03	-0.12	0.14
	S_2	-1.05	0.05	-0.03	0.23
Sc_2NO_2		-1.11		-0.95	
$Mo-Sc_2NO_2$	S_2	-1.19	0.08	0.18	1.13
Re-Sc ₂ NO ₂	S_{0}	-1.18	0.07	0.74	1.69
	S_I	-1.15	0.04	-0.07	0.88
	S_2	-1.16	0.05	-0.08	0.87

References

- 1 J. K. Norskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov and J. K. Norskov, J. Electrochem. Soc., 2005, 152, J23-J26.
- 2 J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff and J. K. Norskov, *Nat. Mater.*, 2006, **5**, 909-913.
- 3 J. Greeley and M. Mavrikakis, Nat. Mater., 2004, 3, 810-815.
- 4 B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff and J. K. Nørskov, *J. Am. Chem. Soc.*, 2005, **127**, 5308-5309.
- 5 E. Skúlason, G. S. Karlberg, J. Rossmeisl, T. Bligaard, J. Greeley, H. Jónsson and J. K. Nørskov, *Phys. Chem. Chem. Phys.*, 2007, 9, 3241-3250.
- 6 Q. Tang and D. e. Jiang, ACS Catal., 2016, 6, 4953-4961.